如图1,在直角梯形中,,, ,,.将沿折起,使平面平面,得到几何体,如图2所示.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值.
在三棱锥P-ABC中,D为AB的中点。
(1)与BC平行的平面PDE交AC于点E,判断点E在AC上的位置并说明理由如下:
(2)若PA=PB,且△PCD为锐角三角形,又平面PCD⊥平面ABC,求证:AB⊥PC。
【改编】(本小题满分14分)在棱锥中,,平面,平面,
是的中点,,.
(1)求证:平面平面;
(2)求点到平面的距离.
(本小题满分14分)如图,在三棱锥P- ABC中,已知平面PBC 平面ABC.
(1)若ABBC,CPPB,求证:CPPA:
(2)若过点A作直线⊥平面ABC,求证://平面PBC.
(本小题满分12分)如图,四棱锥的底面是正方形,平面,,点是上的点,且.
(1)求证:对任意的,都有;
(2)若二面角的大小为,求实数的值.
(本小题满分12分)如图,矩形中,,,是中点,为上的点,且.
(1)求证:;
(2)求三棱锥的体积.
本题共有2小题,第(1)小题满分6分,第(2)小题满分8分.
如图,在长方体中,,,点在棱上移动.
(1)证明:;
(2)等于何值时,二面角的大小为.
(本小题满分13分)如图甲,在平面四边形中,已知,,,,现将四边形沿折起,使平面平面(如图乙),设点,分别为棱,的中点.
(1)证明平面;
(2)求与平面所成角的正弦值;
(3)求二面角的余弦值.
(本小题满分13分)如图甲,在平面四边形中,已知,,,,现将四边形沿折起,使平面平面(如图乙),设点,分别为棱,的中点.
(1)证明平面;
(2)求与平面所成角的正弦值;
(3)求二面角的余弦值.
本题共有2个小题,第1小题满分6分,第2小题满分8分.
如图,四棱锥的底面为菱形,平面,,,、分别为、的中点.
(1)求证:平面;
(2)求三棱锥的体积.
本题共有2个小题,第1小题满分6分,第2小题满分8分.
如图,四棱锥的底面为菱形,平面,,,为的中点.
(1)求证:平面;
(2)求平面与平面所成的锐二面角大小的余弦值.
试题篮
()