优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用 / 解答题
高中数学

如图1,在直角梯形中,.将沿折起,使平面平面,得到几何体,如图2所示.
 
(Ⅰ)求证:平面
(Ⅱ)求二面角的余弦值.

  • 题型:未知
  • 难度:未知

在三棱锥P-ABC中,D为AB的中点。

(1)与BC平行的平面PDE交AC于点E,判断点E在AC上的位置并说明理由如下:
(2)若PA=PB,且△PCD为锐角三角形,又平面PCD⊥平面ABC,求证:AB⊥PC。

  • 题型:未知
  • 难度:未知

【改编】(本小题满分14分)在棱锥中,平面平面
的中点,

(1)求证:平面平面
(2)求点到平面的距离.

  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,在三棱锥P- ABC中,已知平面PBC 平面ABC.

(1)若ABBC,CPPB,求证:CPPA:
(2)若过点A作直线⊥平面ABC,求证://平面PBC.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,四棱锥的底面是正方形,平面,点上的点,且

(1)求证:对任意的,都有
(2)若二面角的大小为,求实数的值.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,矩形中,中点,上的点,且

(1)求证:
(2)求三棱锥的体积.

  • 题型:未知
  • 难度:未知

三棱柱底面,且为正三角形,且,中点.

(1)求证:平面⊥平面
(2)若AA1=AB=2,求点A到面BC1D的距离.

  • 题型:未知
  • 难度:未知

如图,在直棱柱

(1)证明:
(2)求直线所成角的正弦值.

  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面且边长为的菱形,侧面是等边三角形,且平面⊥底面的中点.

(1)求证:PD;
(2)求 点G到平面PAB的距离。

  • 题型:未知
  • 难度:未知

已知四棱锥,底面是菱形,,

(1)求证:
(2)求二面角的余弦值.

  • 题型:未知
  • 难度:未知

本题共有2小题,第(1)小题满分6分,第(2)小题满分8分.
如图,在长方体中,,点在棱上移动.

(1)证明:
(2)等于何值时,二面角的大小为

  • 题型:未知
  • 难度:未知

(本小题满分13分)如图甲,在平面四边形中,已知,,,,现将四边形沿折起,使平面平面(如图乙),设点分别为棱的中点.

(1)证明平面
(2)求与平面所成角的正弦值;
(3)求二面角的余弦值.

  • 题型:未知
  • 难度:未知

(本小题满分13分)如图甲,在平面四边形中,已知,,,,现将四边形沿折起,使平面平面(如图乙),设点分别为棱的中点.

(1)证明平面
(2)求与平面所成角的正弦值;
(3)求二面角的余弦值.

  • 题型:未知
  • 难度:未知

本题共有2个小题,第1小题满分6分,第2小题满分8分.
如图,四棱锥的底面为菱形,平面分别为的中点.

(1)求证:平面
(2)求三棱锥的体积.

  • 题型:未知
  • 难度:未知

本题共有2个小题,第1小题满分6分,第2小题满分8分.
如图,四棱锥的底面为菱形,平面,,,的中点.

(1)求证:平面
(2)求平面与平面所成的锐二面角大小的余弦值.

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用解答题