(本小题满分12分)如图,已知四边形ABCD是正方形,平面ABCD,CD=PD=2EA,PD//EA,F,G,H分别为PB,BE,PC的中点.
(1)求证:GH//平面PDAE;
(2)求证:平面平面PCD.
(本小题满分14分)如图,四边形为菱形,为平行四边形,且平面平面,设与相交于点,为的中点.
(1)证明:;
(2)若,,,求三棱锥的体积.
如图,在四棱柱中,底面是等腰梯形,,
∥,顶点在底面内的射影恰为点.
(Ⅰ)求证:;
(Ⅱ)在上是否存在点,使得∥平面?若存在,确定点的位置;若不存在,请说明理由.
己知斜三棱柱的底面是边长为的正三角形,侧面为菱形,,平面平面,是的中点.
(1)求证:;
(2)求二面角的余弦值.
(本小题满分14分)如图所示,棱柱为正三棱柱,且,其中点分别为的中点.
(1)求证:平面;
(2)求证:平面;
(3)求平面与平面所成的锐二面角的余弦值
(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,E、F分别为A1C1和BC的中点.
(1)求证:平面ABE⊥平面B1BCC1;
(2)求证:C1F//平面ABE.
(本小题满分12分)如图,已知平面是正三角形,.
(Ⅰ)在线段上是否存在一点,使平面?
(Ⅱ)求证:平面平面;
(Ⅲ)求二面角的余弦值.
如图,在矩形中,点为边上的点,点为边的中点, ,现将沿边折至位置,且平面平面.
(Ⅰ)求证:平面平面;
(Ⅱ)求四棱锥的体积.
三棱柱中,侧棱与底面垂直,,,是的中点,是与的交点.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面.
三棱柱中,侧棱与底面垂直,,,是的中点,是与的交点.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面.
(本小题满分12分)如图,棱锥中, 底面,底面是矩形,,.
(1)求证:平面⊥平面;
(2)在边上是否存在一点,使得点到平面的距离为2,若存在,求的值,若不存在,请说明理由。
试题篮
()