优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用 / 解答题
高中数学

(本小题满分12分)如图,已知四边形ABCD是正方形,平面ABCD,CD=PD=2EA,PD//EA,F,G,H分别为PB,BE,PC的中点.

(1)求证:GH//平面PDAE;
(2)求证:平面平面PCD.

  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,四边形为菱形,为平行四边形,且平面平面,设相交于点的中点.
(1)证明:
(2)若,求三棱锥的体积.

  • 题型:未知
  • 难度:未知

如图,在四棱柱中,底面是等腰梯形,
,顶点在底面内的射影恰为点

(Ⅰ)求证:
(Ⅱ)在上是否存在点,使得∥平面?若存在,确定点的位置;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

己知斜三棱柱的底面是边长为的正三角形,侧面为菱形,,平面平面的中点.

(1)求证:
(2)求二面角的余弦值.

  • 题型:未知
  • 难度:未知

已知四棱锥的底面是平行四边形,分别是的中点,

(Ⅰ)求证:
(Ⅱ)若,求二面角的余弦值.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图四棱锥,,平面,M为的中点.

(Ⅰ)求证:平面
(Ⅱ)在平面上找一点N,使得平面

  • 题型:未知
  • 难度:未知

(本小题满分14分)如图所示,棱柱为正三棱柱,且,其中点分别为的中点.

(1)求证:平面;
(2)求证:平面;
(3)求平面与平面所成的锐二面角的余弦值

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,已知矩形所在的平面与直角梯形所在的平面垂直,且分别为的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面⊥平面

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,E、F分别为A1C1和BC的中点.

(1)求证:平面ABE⊥平面B1BCC1
(2)求证:C1F//平面ABE.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,已知平面是正三角形,.

(Ⅰ)在线段上是否存在一点,使平面?
(Ⅱ)求证:平面平面
(Ⅲ)求二面角的余弦值.

  • 题型:未知
  • 难度:未知

如图,在矩形中,点为边上的点,点为边的中点, ,现将沿边折至位置,且平面平面.
   
(Ⅰ)求证:平面平面
(Ⅱ)求四棱锥的体积.

  • 题型:未知
  • 难度:未知

三棱柱中,侧棱与底面垂直,的中点,的交点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面

  • 题型:未知
  • 难度:未知

三棱柱中,侧棱与底面垂直,的中点,的交点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,棱锥中, 底面,底面是矩形,.

(1)求证:平面⊥平面
(2)在边上是否存在一点,使得点到平面的距离为2,若存在,求的值,若不存在,请说明理由。

  • 题型:未知
  • 难度:未知

如图,四棱锥的底面是矩形,侧面是正三角形,且侧面底面,为侧棱的中点

(1)求证://平面
(2)求证:⊥平面
(3)若直线与平面所成的角为30,求的值

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用解答题