优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 正交试验设计方法 / 解答题
高中数学

高三年级有3名男生和1名女生为了报某所大学,事先进行了多方详细咨询,并根据自己的高考成绩情况,最终估计这3名男生报此所大学的概率都是,这1名女生报此所大学的概率是.且这4人报此所大学互不影响。
(Ⅰ)求上述4名学生中报这所大学的人数中男生和女生人数相等的概率;
(Ⅱ)在报考某所大学的上述4名学生中,记为报这所大学的男生和女生人数的和,试求的分布列和数学期望.

  • 题型:未知
  • 难度:未知

为了防止受到核污染的产品影响我国民众的身体健康,要求产品进入市场前必须进行两轮核放射检测,只有两轮都合格才能进行销售。已知某产品第一轮检测不合格的概率为,第二轮检测不合格的概率为,两轮检测是否合格相互没有影响。
(1)求该产品不能销售的概率
(2)如果产品可以销售,则每件产品可获利40元;如果产品不能销售,则每件产品亏损80元(即获利-80元)。已知一箱中有4件产品,记可销售的产品数为X,求X的分布列,并求一箱产品获利的均值。

  • 题型:未知
  • 难度:未知

)已知某音响设备由五个部件组成,A电视机,B影碟机,C线路,D左声道和E右声道,其中每个部件工作的概率如图所示,能听到声音,当且仅当A与B中有一个工作,C工作,D与E中有一个工作;且若D和E同时工作则有立体声效果.

(1)求能听到立体声效果的概率;
(2)求听不到声音的概率.(结果精确到0.01)

  • 题型:未知
  • 难度:未知

某医院将一专家门诊已诊的1000例病人的病情及诊断所用时间(单位:分钟)进行了统计,如下表.若视频率为概率,请用有关知识解决下列问题.

病症及代号
普通病症
复诊病症
常见病症
疑难病症
特殊病症
人数
100
300
200
300
100
每人就诊时间(单位:分钟)
3
4
5
6
7

表示某病人诊断所需时间,求的数学期望.
并以此估计专家一上午(按3小时计算)可诊断多少病人;
某病人按序号排在第三号就诊,设他等待的时间为,求
求专家诊断完三个病人恰好用了一刻钟的概率.

  • 题型:未知
  • 难度:未知

有甲,乙两个盒子,甲盒中装有2个小球,乙盒中装有3个小球,每次随机选取一个盒子并从中取出一个小球
(1)当甲盒中的球被取完时,求乙盒中恰剩下1个球的概率;
(2)当第一次取完一个盒子中的球时,另一个盒子恰剩下个球,求的分布列及期望

  • 题型:未知
  • 难度:未知

某足球俱乐部2013年10月份安排4次体能测试,规定:按顺序测试,一旦测试合格就不必参加以后的测试,否则4次测试都要参加。若运动员小李4次测试每次合格的概率组成一个公差为的等差数列,他第一次测试合格的概率不超过,且他直到第二次测试才合格的概率为
(Ⅰ)求小李第一次参加测试就合格的概率P1
(2)求小李10月份参加测试的次数x的分布列和数学期望。

  • 题型:未知
  • 难度:未知

某射手击中目标的概率为0.8,每次射击的结果相互独立,现射击10次,问他最有可能射中几次?

  • 题型:未知
  • 难度:未知

为了解某市市民对政府出台楼市限购令的态度,在该市随机抽取了50名市民进行调查,他们月收入(单位:百元)的频数分布及对楼市限购令的赞成人数如下表:

月收入

[25,35)
[35,45)



频数
5
10
15
10
5
5
赞成人数
4
8
8
5
2
1

将月收入不低于55的人群称为“高收入族”,月收入低于55的人群称为“非高收人族”。
(Ⅰ)根据已知条件完成下面的2×2列联表,有多大的把握认为赞不赞成楼市限购令与收入高低有关?
已知:
<2.706时,没有充分的证据判定赞不赞成楼市限购令与收入高低有关;
>2.706时,有90%的把握判定赞不赞成楼市限购令与收入高低有关;
>3.841时,有95%的把握判定赞不赞成楼市限购令与收入高低有关;
>6.635时,有99%的把握判定赞不赞成楼市限购令与收入高低有关。

 
非高收入族
高收入族
总计
赞成
 
 
 
不赞成
 
 
 
总计
 
 
 

(Ⅱ)现从月收入在[55,65)的人群中随机抽取两人,求所抽取的两人中至少一人赞成楼市限购令的概率。

  • 题型:未知
  • 难度:未知

已知射手甲射击一次,命中9环(含9环)以上的概率为0.56,命中8环的概率为0.22,命中7环的概率为0.12.
①求甲射击一次,命中不足8环的概率.
②求甲射击一次,至少命中7环的概率.

  • 题型:未知
  • 难度:未知

甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为
求:(1)乙至少击中目标2次的概率;
(2)乙恰好比甲多击中目标2次的概率

  • 题型:未知
  • 难度:未知

甲、乙、丙三人进行乒乓球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为,各局比赛的结果相互独立,第1局甲当裁判.
(1)求第4局甲当裁判的概率;
(2)用X表示前4局中乙当裁判的次数,求X的分布列和数学期望.

  • 题型:未知
  • 难度:未知

5名工人独立地工作,假定每名工人在1小时内平均12分钟需要电力(即任一时刻需要电力的概率为12/60)
(1)设X为某一时刻需要电力的工人数,求 X的分布列及期望;
(2)如果同一时刻最多能提供3名工人需要的电力,求电力超负荷的概率,并解释实际意义.

  • 题型:未知
  • 难度:未知

某中学经市批准建设分校,工程从2010年底开工到2013年底完工,分三期完成,经过初步招标淘汰后,确定由甲、乙两建筑公司承建,且每期工程由两公司之一独立完成,必须在建完前一期工程后再建后一期工程,已知甲公司获得第一期,第二期,第三期工程承包权的概率分别是
(I)求甲乙两公司均至少获得l期工程的概率;
(II)求甲公司获得的工程期数的分布列和数学期望E(X).

  • 题型:未知
  • 难度:未知

甲与乙两人掷硬币,甲用一枚硬币掷3次,记正面朝上的次数为;乙用这枚硬币掷2次,记正面朝上的次数为
(1)分别求的期望;
(2)规定:若,则甲获胜;若,则乙获胜,分别求出甲和乙获胜的概率.

  • 题型:未知
  • 难度:未知

(8分)一个口袋有5个同样大小的球,编号为1、2、3、4、5,从中同时取出3个,以ξ表示取出球编号的最小号码,求(1)ξ的分布列.(2)取出球编号最小的号码小于等于2的概率

  • 题型:未知
  • 难度:未知

高中数学正交试验设计方法解答题