优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 平面解析几何的产生──数与形的结合
高中数学

如图,已知椭圆的中心在坐标原点,焦点在轴上,它的一个顶点为,且离心率等于,过点的直线与椭圆相交于不同两点,点在线段上。

(1)求椭圆的标准方程;
(2)设,若直线轴不重合,
试求的取值范围。

  • 题型:未知
  • 难度:未知

设过点的直线与椭圆相交于AB两个不同的点,且.记O为坐标原点.求的面积取得最大值时的椭圆方程.

  • 题型:未知
  • 难度:未知

(本小题满分10分)如图,在中,,以为直径的圆于点,连接,并延长交的延长线于点,圆的切线
(Ⅰ)证明:
(Ⅱ)若,求的长。

  • 题型:未知
  • 难度:未知

如图,动点M与两定点A(-1,0),B(2,0)构成△MAB,且∠MBA=2∠MAB.设动点M的轨迹为C.
(1)求轨迹C的方程;
(2)设直线(其中)与y轴相交于点P,与轨迹C相交于点Q,R,且,求的取值范围.

  • 题型:未知
  • 难度:未知

(本小题满分14分)已知为坐标原点,点F、T、M、P分别满足.
(1) 当t变化时,求点P的轨迹方程;
(2) 若的顶点在点P的轨迹上,且点A的纵坐标,的重心恰好为点F,
求直线BC的方程.

  • 题型:未知
  • 难度:未知

(本题满分16分)本题共有2个小题,第1小题满分6分,第2小题满分10分.
  已知两点,点是直角坐标平面上的动点,若将点的横坐标保持不变、纵坐标扩大到倍后得到点满足
(1) 求动点所在曲线的轨迹方程;
(2)(理科)过点作斜率为的直线交曲线两点,且满足,又点关于原点O的对称点为点,试问四点是否共圆,若共圆,求出圆心坐标和半径;若不共圆,请说明理由.
(文科)过点作斜率为的直线交曲线两点,且满足(O为坐标原点),试判断点是否在曲线上,并说明理由.

  • 题型:未知
  • 难度:未知

过点作一直线与圆相交于M、N两点,则的最小值为(     )

A. B.2 C.4 D.6
来源:福建2011届高三数学四校联考文科数学试卷
  • 题型:未知
  • 难度:未知

已知椭圆的离心率,左、右焦点分别为,定点P,点在线段的中垂线上.
(1)求椭圆C的方程;
(2)设直线与椭圆C交于M、N两点,直线的倾斜角分别为,求证:直线过定点,并求该定点的坐标.

  • 题型:未知
  • 难度:未知

已知椭圆和抛物线有公共焦点F(1,0), 的中心和的顶点都在坐标原点,过点M(4,0)的直线与抛物线分别相交于A,B两点.
(Ⅰ)写出抛物线的标准方程;
(Ⅱ)若,求直线的方程;
(Ⅲ)若坐标原点关于直线的对称点在抛物线上,直线与椭圆有公共点,求椭圆的长轴长的最小值.

  • 题型:未知
  • 难度:未知

是方程表示椭圆的(   )

A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分又不必要条件
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,两点间的“L-距离”定义为,则平面内与轴上两个不同的定点的“L-距离”之和等于定值(大于)的点的轨迹可以是(   )

  • 题型:未知
  • 难度:未知

在平面直角坐标系中,两点间的"距离"定义为则平面内与轴上两个不同的定点的"距离"之和等于定值(大于)的点的轨迹可以是(

A.

B.

C.

D.

  • 题型:未知
  • 难度:未知

已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,两准线间的距离为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线过点P(0,2)且与椭圆相交于A、B两点,当ΔAOB面积取得最大值时,求直线l的方程.

  • 题型:未知
  • 难度:未知

已知点A, B的坐标分别为(-5,0),(5,0),直线AM,BM相交于点M, 且它们的斜率之积是,则点M的轨迹方程为                      

  • 题型:未知
  • 难度:未知

过点作直线与抛物线相交于A、B两点,F为C的焦点,若,则直线的斜率为             

  • 题型:未知
  • 难度:未知

高中数学平面解析几何的产生──数与形的结合试题