优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 第二数学归纳法 / 选择题
高中数学

用数学归纳法证明的过程中,第二步假设当时等式成立,则当时应得到(  )

A.
B.
C.
D.
  • 题型:未知
  • 难度:未知

用数学归纳法证明不等式成立,其的初始值至少应为 (      )

A.7 B.8 C.9 D.10
  • 题型:未知
  • 难度:未知

用数学归纳法证明不等式成立,其的初始值至少应为 (      )

A.7 B.8 C.9 D.10
  • 题型:未知
  • 难度:未知

下列推理中属于归纳推理且结论正确的是(  )

A.设数列﹛an﹜的前n项和为sn,由an=2n﹣1,求出s1 =12 , s2=22,s3=32,…推断sn=n2
B.由cosx,满足x∈R都成立,推断为奇函数。
C.由圆的面积推断:椭圆(a>b>0)的面积s=πab
D.由(1+1)2>21,(2+1)2>22,(3+1)2 >23,…,推断对一切正整数n,(n+1)2>2n
  • 题型:未知
  • 难度:未知

用数学归纳法证明“时,从“”时,左边应增添的式子是(    )

A. B. C. D.
  • 题型:未知
  • 难度:未知

用火柴棒摆“金鱼”,如图所示:

按照上面的规律,第4个“金鱼”图需要火柴棒的根数为

A.24 B.26 C.28 D.30
  • 题型:未知
  • 难度:未知

用数学归纳法证明1+2+3+…+n2,则当n=k+1时左端应在n=k的基础上加上(  )

A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+…+(k+1)2
  • 题型:未知
  • 难度:未知

在数列{an}中,an=1-+…+,则ak+1等于(  )

A.ak B.ak
C.ak D.ak
  • 题型:未知
  • 难度:未知

用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证n=k+1时的情况,只需展开(  )

A.(k+3)3 B.(k+2)3
C.(k+1)3 D.(k+1)3+(k+2)3
  • 题型:未知
  • 难度:未知

平面内有n条直线,最多可将平面分成f(n)个区域,则f(n)的表达式为(  )

A.n+1 B.2n
C. D.n2+n+1
  • 题型:未知
  • 难度:未知

某个命题与自然数n有关,若n=k(k∈N*)时命题成立,那么可推得当n=k+1时该命题也成立,现已知n=5时,该命题不成立,那么可以推得(  )

A.n=6时该命题不成立 B.n=6时该命题成立
C.n=4时该命题不成立 D.n=4时该命题成立
  • 题型:未知
  • 难度:未知

用数学归纳法证明1+2+3+…+(2n+1)=(n+1)(2n+1)时,从n=k到n=k+1,左边需增添的代数式是(  )

A.2k+2 B.2k+3
C.2k+1 D.(2k+2)+(2k+3)
  • 题型:未知
  • 难度:未知

用数学归纳法证明1++…+> (n∈N*)成立,其初始值至少应取(  )

A.7 B.8 C.9 D.10
  • 题型:未知
  • 难度:未知

用数学归纳法证明)时,从“”左边需增乘的代数式为(   )

A. B. C. D.
  • 题型:未知
  • 难度:未知

利用数学归纳法证明不等式1+<f(n) (n≥2,)的过程中,由n=k变到n=k+1时,左边增加了(   )

A.1项 B.k项 C. D.
  • 题型:未知
  • 难度:未知

高中数学第二数学归纳法选择题