优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 第二数学归纳法 / 选择题
高中数学

在用数学归纳法证明f(n)=++…+<1(n∈N*,n≥3)的过程中:假设当n=k(k∈N*,k≥3)时,不等式f(k)<1成立,则需证当n=k+1时,f(k+1)<1也成立.若f(k+1)=f(k)+g(k),则g(k)=( )

A.+ B.+ C. D.
来源:
  • 题型:未知
  • 难度:未知

用数学归纳法证明1+2+3+…+n3=,则当n=k+1时,左端应在n=k的基础上加上( )

A.k3+1
B.(k+1)3
C.
D.(k3+1)+(k3+2)+(k3+3)+…+(k3+1)3
来源:
  • 题型:未知
  • 难度:未知

用数学归纳法证明“42n-1+3n+1(n∈N*)能被13整除”的第二步中,当n=k+1时为了使用归纳假设,对42k+1+3k+2变形正确的是(   )

A.16(42k-1+3k+1)-13×3k+1
B.4×42k+9×3k
C.(42k-1+3k+1)+15×42k-1+2×3k+1
D.3(42k-1+3k+1)-13×42k-1
  • 题型:未知
  • 难度:未知

用数学归纳法证明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是( )

A.(k+1)2+2k2 B.(k+1)2+k2
C.(k+1)2 D.
  • 题型:未知
  • 难度:未知

用数学归纳法证明1+a+a2+…+an+1=(a≠1,n∈N*),在验证当n=1时,等式左边应为( ).

A.1 B.1+a C.1+a+a2 D.1+a+a2+a3
  • 题型:未知
  • 难度:未知

用数学归纳法证明12+32+52+…+(2n﹣1)2=n(4n2﹣1)过程中,由n=k递推到n=k+1时,不等式左边增加的项为(  )

A.(2k)2 B.(2k+3)2 C.(2k+2)2 D.(2k+1)2
  • 题型:未知
  • 难度:未知

用数学归纳法证明1+2+3+…+n2,则当n=k+1时左端应在n=k的基础上加上(  ).

A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2
  • 题型:未知
  • 难度:未知

,则对于          

  • 题型:未知
  • 难度:未知

用数学归纳法证明1++…+=-(≠1,n∈N*),在验证n=1成立时,左边的项是(  )

A.1 B.1+ C.1+ D.1++
  • 题型:未知
  • 难度:未知

用数学归纳法证明:“1+a+a2+ +an+1 (a≠1,n∈N*)”在验证n=1时,左端计算所得的项为(   )

A.1 B.1+a
C.1+a+a2 D.1+a+a2+a3
  • 题型:未知
  • 难度:未知

用数学归纳法证明,“当n为正奇数时,能被整除”时,第2步归纳假设应写成(   )

A.假设时正确,再推证时正确
B.假设时正确,再推证时正确
C.假设时正确,再推证时正确
D.假设时正确,再推证时正确
  • 题型:未知
  • 难度:未知

用数学归纳法证明1+2+3+ +n2,则当n=k+1时左端应在n=k的基础上加上(  )

A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+ +(k+1)2
  • 题型:未知
  • 难度:未知

用数学归纳法证明“”()时,从 “”时,左边应增添的式子是(   )

A. B. C. D.
  • 题型:未知
  • 难度:未知

图1,2,3,4分别包含1,5,13和25个互不重叠的单位正方形,按同样的方式构造图形,则第个图包含______个互不重叠的单位正方形。

图1      图2         图3              图4

  • 题型:未知
  • 难度:未知

用数学归纳法证明“时,从“”时,左边应增添的式子是(    ).

A. B. C. D.
  • 题型:未知
  • 难度:未知

高中数学第二数学归纳法选择题