下列推理中属于归纳推理且结论正确的是( )
A.由an=2n﹣1,求出S1=12,S2=22,S3=32,…,推断:数列{an}的前n项和Sn=n2 |
B.由f(x)=xcosx满足f(﹣x)=﹣f(x)对![]() |
C.由圆x2+y2=r2的面积S=πr2,推断:椭圆![]() |
D.由![]() ![]() |
已知有下列各式:
,
成立,观察上面各式,按此规律若
,则正数
( )
A.4 | B.5 | C.![]() |
D.![]() |
下列推理中属于归纳推理且结论正确的是( )
A.由an=2n﹣1,求出S1=12,S2=22,S3=32,…,推断:数列{an}的前n项和Sn=n2 |
B.由f(x)=xcosx满足f(﹣x)=﹣f(x)对![]() |
C.由圆x2+y2=r2的面积S=πr2,推断:椭圆![]() |
D.由![]() ![]() |
用火柴棒摆“金鱼”,如图所示:
按照上面的规律,第4个“金鱼”图需要火柴棒的根数为
A.24 | B.26 | C.28 | D.30 |
用数学归纳法证明等式(n∈N*)的过程中,第二步假设n=k时等式成立,则当n=k+1时应得到( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
某同学在纸上画出如下若干个三角形:
△△△△△△△△△△△△△△△……
若依此规律,得到一系列的三角形,则在前2015个三角形中共有的个数是( )
A.64 | B.63 | C.62 | D.61 |
用数学归纳法证明:1+2+22+…2n﹣1=2n﹣1(n∈N)的过程中,第二步假设当n=k时等式成立,则当n=k+1时应得到( )
A.1+2+22+…+2k﹣2+2k+1﹣1 |
B.1+2+22+…+2k+2k+1=2k﹣1+2k+1 |
C.1+2+22+…+2k﹣1+2k+1=2k+1﹣1 |
D.1+2+22+…+2k﹣1+2k=2k﹣1+2k |
利用数学归纳法证明“(n+1)(n+2)…(n+n)=2n×1×3×…×(2n﹣1),n∈N*”时,从“n=k”变到“n=k+1”时,左边应增乘的因式是( )
A.2k+1 | B.![]() |
C.![]() |
D.![]() |
用数学归纳法证明不等式“+
+…+
>
(n>2)”时的过程中,由n=k到n=k+1时,不等式的左边( )
A.增加了一项![]() |
B.增加了两项![]() |
C.增加了两项![]() ![]() |
D.增加了一项![]() ![]() |
某个命题与自然数n有关,若n=k(k∈N*)时命题成立,那么可推得当n=k+1时该命题也成立.现已知当n=5时,该命题不成立,那么可推得( )
A.当n=6时,该命题不成立 | B.当n=6时,该命题成立 |
C.当n=4时,该命题不成立 | D.当n=4时,该命题成立 |
用数学归纳法证明1+2+3+…+(3n+1)=,则当n=k+1时左端应在n=k的基础上加上( )
A.(3k+2) |
B.(3k+4) |
C.(3k+2)+(3k+3) |
D.(3k+2)+(3k+3)+(3k+4) |
试题篮
()