优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 表面展开图 / 解答题
高中数学

如图甲,是边长为6的等边三角形,分别为靠近的三等分点,点为边边的中点,线段交线段于点.将沿翻折,使平面平面,连接,形成如图乙所示的几何体.

(1)求证:平面
(2)求四棱锥的体积.

  • 题型:未知
  • 难度:未知

如图所示,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABEF⊥平面EFDC,设AD中点为P.

(1)当E为BC中点时,求证:CP∥平面ABEF;
(2)设BE=x,问当x为何值时,三棱锥ACDF的体积有最大值?并求出这个最大值.

  • 题型:未知
  • 难度:未知

如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.

  • 题型:未知
  • 难度:未知

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.

(1)求证:CE⊥平面PAD;
(2)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积.

  • 题型:未知
  • 难度:未知

如图,底面边长为a,高为h的正三棱柱ABC-A1B1C1,其中D是AB的中点,E是BC的三等分点.求几何体BDEA1B1C1的体积.

  • 题型:未知
  • 难度:未知

四面体的六条棱中,有五条棱长都等于a.
(1)求该四面体的体积的最大值;
(2)当四面体的体积最大时,求其表面积.

  • 题型:未知
  • 难度:未知

在边长为a的正三角形铁皮的三个角切去三个全等的四边形,再把它的边沿虚线折起(如图),做成一个无盖的正三角形底铁皮箱,当箱底边长为多少时,箱子容积最大?最大容积是多少?

  • 题型:未知
  • 难度:未知

如图①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图②所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连结AB,设点F是AB的中点.
图①图②
(1)求证:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B-DEG的体积.

  • 题型:未知
  • 难度:未知

在如图所示的多面体中,已知正三棱柱ABCA1B1C1的所有棱长均为2,四边形ABDC是菱形.

(1)求证:平面ADC1⊥平面BCC1B1
(2)求该多面体的体积.

  • 题型:未知
  • 难度:未知

如图所示的多面体中,是菱形,是矩形,,

(1)求证:平
(2)若,求四棱锥的体积.

  • 题型:未知
  • 难度:未知

已知多面体中, 四边形为矩形,,平面平面分别为的中点,且.

(1)求证:平面
(2)求证:平面
(3)设平面将几何体分成的两个锥体的体积分别为,求 的值.

  • 题型:未知
  • 难度:未知

如图所示,矩形ABCD中,AB=a,AD=b,过点D作DE⊥AC于E,交直线AB于F.现将△ACD沿对角线AC折起到△PAC的位置,使二面角PACB的大小为60°.过P作PH⊥EF于H.

(1)求证:PH⊥平面ABC;
(2)若a+b=2,求四面体PABC体积的最大值.

  • 题型:未知
  • 难度:未知

如图(1)所示,△ABC是等腰直角三角形,AC=BC=4,E、F分别为AC、AB的中点,将△AEF沿EF折起,使A′在平面BCEF上的射影O恰为EC的中点,得到图(2).

(1)求证:EF⊥A′C;
(2)求三棱锥FA′BC的体积.

  • 题型:未知
  • 难度:未知

如图所示,直三棱柱ABCA1B1C1中,D,E分别是AB,BB1的中点.

(1)证明:BC1∥平面A1CD;
(2)设AA1=AC=CB=2,AB=2,求三棱锥CA1DE的体积.

  • 题型:未知
  • 难度:未知

如图,三棱柱ABCA1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.

(1)证明:AB⊥A1C;
(2)若AB=CB=2,A1C=,求三棱柱ABCA1B1C1的体积.

  • 题型:未知
  • 难度:未知

高中数学表面展开图解答题