如图,已知抛物线
,圆
,过点
作不过原点
的直线
,
分别与抛物线
和圆
相切,
为切点.
(1)求点
的坐标;
(2)求
注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则该直线与抛物线相切,称该公共点为切点.
如图,在三棱锥 中, 在底面 的射影为 的中点, 为
(1)证明:
;
(2)求直线
和平面
所成的角的正弦值.
已知椭圆
上两个不同的点
关于直线
对称.
(1)求实数
的取值范围;
(2)求
面积的最大值(
为坐标原点).
已知函数
,记
是
在区间
上的最大值.
(1)证明:当
时,
;
(2)当
,
满足
,求
的最大值.
如图,在三棱柱
-中,
,
,
,
在底面
的射影为
的中点,
为
的中点.
(1)证明:
平面
;
(2)求二面角
的平面角的余弦值.
在 中,内角 , , 所对的边分别为 , , ,已知 , .
(1)求
的值;
(2)若
的面积为
,求
的值.
已知函数
.
(Ⅰ)当
时求不等式
的解集;
(Ⅱ)若
图像与
轴围成的三角形面积大于6,求
的取值范围.
在直角坐标系中,直线,圆,以坐标原点为极点,轴正半轴为极轴建立极坐标系.
(Ⅰ)求的极坐标方程.
(Ⅱ)若直线的极坐标方程为,设的交点为,求的面积.
如图
是圆
直径,
是
切线,
交
与点
.
(Ⅰ)若
为
中点,求证:
是
切线;
(Ⅱ)若
,求
的大小.
已知过点
且斜率为
的直线
与圆
交于
两点.
(Ⅰ)求
的取值范围;
(Ⅱ)
,其中
为坐标原点,求
.
某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费
(单位:千元)对年销售量
(单位:
)和年利润
(单位:千元)的影响,对近8年的宣传费
和年销售量
数据作了初步处理,得到下面的散点图及一些统计量的值.
46.6 |
56.3 |
6.8 |
289.8 |
1.6 |
1469 |
108.8 |
表中 =  ,  =
(Ⅰ)根据散点图判断,
与
,哪一个适宜作为年销售量
关于年宣传费
的回归方程类型(给出判断即可,不必说明理由);
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(III)已知这种产品的年利润z与x,y的关系为
 ,根据(Ⅱ)的结果回答下列问题:
(Ⅰ)当年宣传费
时,年销售量及年利润的预报值时多少?
(Ⅱ)当年宣传费
为何值时,年利润的预报值最大?
附:对于一组数据
,
,……,
,其回归线
的斜率和截距的最小二乘估计分别为:
,
试题篮
()