如图,四边形 是边长为1的正方形,点 是射线 上的动点(点 不与点 ,点 重合),点 在线段 的延长线上,且 ,连接 ,将 绕点 顺时针旋转 得到 ,连接 , , .设 ,四边形 的面积为 ,下列图象能正确反映出 与 的函数关系的是
A. |
|
B. |
|
C. |
|
D. |
|
某水果超市以每千克20元的价格购进一批樱桃,规定每千克樱桃售价不低于进价又不高于40元,经市场调查发现,樱桃的日销售量 (千克)与每千克售价 (元 满足一次函数关系,其部分对应数据如下表所示:
每千克售价 (元 |
|
25 |
30 |
35 |
|
日销售量 (千克) |
|
110 |
100 |
90 |
|
(1)求 与 之间的函数关系式;
(2)该超市要想获得1000的日销售利润,每千克樱桃的售价应定为多少元?
(3)当每千克樱桃的售价定为多少元时,日销售利润最大?最大利润是多少?
超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量 (瓶 与每瓶售价 (元 之间满足一次函数关系(其中 ,且 为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶.
(1)求 与 之间的函数关系式;
(2)设超市销售该品牌洗手液每天销售利润为 元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元?
如图,在 中, , , 于点 .点 从点 出发,沿 的路径运动,运动到点 停止,过点 作 于点 ,作 于点 .设点 运动的路程为 ,四边形 的面积为 ,则能反映 与 之间函数关系的图象是
A. |
|
B. |
|
C. |
|
D. |
|
如图, 中, , , ,点 从点 出发,沿边 以 的速度向终点 运动,过点 作 ,交边 (或 于点 .设点 的运动时间为 , 的面积为 .
(1)当点 与点 重合时,求 的值;
(2)求 关于 的函数解析式,并直接写出自变量 的取值范围.
某公司销售一种商品,成本为每件30元,经过市场调查发现,该商品的日销售量 (件 与销售单价 (元 是一次函数关系,其销售单价、日销售量的三组对应数值如下表:
销售单价 (元) |
40 |
60 |
80 |
日销售量 (件) |
80 |
60 |
40 |
(1)直接写出 与 的关系式 ;
(2)求公司销售该商品获得的最大日利润;
(3)销售一段时间以后,由于某种原因,该商品每件成本增加了10元,若物价部门规定该商品销售单价不能超过 元,在日销售量 (件 与销售单价 (元 保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求 的值.
某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经过市场调查,得出每天销售量 (件 是每件售价 (元 为正整数)的一次函数,其部分对应数据如下表所示:
每件售价 (元 |
|
15 |
16 |
17 |
18 |
|
每天销售量 (件 |
|
150 |
140 |
130 |
120 |
|
(1)求 关于 的函数解析式;
(2)若用 (元 表示工艺品厂试销该工艺品每天获得的利润,试求 关于 的函数解析式;
(3)该工艺品每件售价为多少元时,工艺品厂试销该工艺品每天获得的利润最大,最大利润是多少元?
如图, 是等边三角形, ,动点 从点 出发,以 的速度沿 向点 匀速运动,过点 作 ,交折线 于点 ,以 为边作等边三角形 ,使点 , 在 异侧.设点 的运动时间为 , 与 重叠部分图形的面积为 .
(1) 的长为 (用含 的代数式表示).
(2)当点 落在边 上时,求 的值.
(3)求 关于 的函数解析式,并写出自变量 的取值范围.
某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量 (千克)与销售单价 (元 千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:
销售单价 (元 千克) |
55 |
60 |
65 |
70 |
销售量 (千克) |
70 |
60 |
50 |
40 |
(1)求 (千克)与 (元 千克)之间的函数表达式;
(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?
(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?
有一块矩形地块 , 米, 米.为美观,拟种植不同的花卉,如图所示,将矩形 分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为 米.现决定在等腰梯形 和 中种植甲种花卉;在等腰梯形 和 中种植乙种花卉;在矩形 中种植丙种花卉.甲、乙、丙三种花卉的种植成本分别为20元 米 、60元 米 、40元 米 ,设三种花卉的种植总成本为 元.
(1)当 时,求种植总成本 ;
(2)求种植总成本 与 的函数表达式,并写出自变量 的取值范围;
(3)若甲、乙两种花卉的种植面积之差不超过120平方米,求三种花卉的最低种植总成本.
如图,在 中, , , , 为 边上的动点(与 、 不重合), ,交 于点 ,连接 ,设 , 的面积为 .
(1)用含 的代数式表示 的长;
(2)求 与 的函数表达式,并求当 随 增大而减小时 的取值范围.
小明和小丽先后从地出发沿同一直道去地.设小丽出发第时,小丽、小明离地的距离分别为、.与之间的函数表达式是,与之间的函数表达式是.
(1)小丽出发时,小明离地的距离为 .
(2)小丽出发至小明到达地这段时间内,两人何时相距最近?最近距离是多少?
加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率与加工时间(单位:满足函数表达式,则最佳加工时间为 .
"闻起来臭,吃起来香"的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把"焦脆而不糊"的豆腐块数的百分比称为"可食用率".在特定条件下,"可食用率" 与加工煎炸时间 (单位:分钟)近似满足的函数关系为: , , , 是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为
A. |
3.50分钟 |
B. |
4.05分钟 |
C. |
3.75分钟 |
D. |
4.25分钟 |
试题篮
()