优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数的应用 / 解答题
初中数学

2020年是决战决胜扶贫攻坚和全面建成小康社会的收官之年,荆门市政府加大各部门和单位对口扶贫力度.某单位的帮扶对象种植的农产品在某月(按30天计)的第 x ( x 为正整数)的销售价格 p (元 / 千克)关于 x 的函数关系式为 p = 2 5 x + 4 ( 0 < x 20 ) - 1 5 x + 12 ( 20 < x 30 ) ,销售量 y (千克)与 x 之间的关系如图所示.

(1)求 y x 之间的函数关系式,并写出 x 的取值范围;

(2)当月第几天,该农产品的销售额最大,最大销售额是多少?(销售额 = 销售量 × 销售价格)

来源:2020年湖北省荆门市中考数学试卷
  • 题型:未知
  • 难度:未知

某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现,每天销售量 y (瓶 ) 与每瓶售价 x (元 ) 之间存在一次函数关系(其中 10 x 21 ,且 x 为整数).当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶.

(1)求 y x 之间的函数关系式;

(2)设该药店销售该消毒液每天的销售利润为 w 元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大,最大利润是多少元?

来源:2021年四川省雅安市中考数学试卷
  • 题型:未知
  • 难度:未知

黔东南州某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3件乙商品,需65元.

(1)甲、乙两种商品的进货单价分别是多少?

(2)设甲商品的销售单价为(单位:元件),在销售过程中发现:当时,甲商品的日销售量(单位:件)与销售单价之间存在一次函数关系,之间的部分数值对应关系如表:

销售单价(元件)

11

19

日销售量(件

18

2

请写出当时,之间的函数关系式.

(3)在(2)的条件下,设甲商品的日销售利润为元,当甲商品的销售单价(元件)定为多少时,日销售利润最大?最大利润是多少?

来源:2020年贵州省黔东南州中考数学试卷
  • 题型:未知
  • 难度:未知

某网店销售一种儿童玩具,进价为每件30元,物价部门规定每件儿童玩具的销售利润不高于进价的 60 % .在销售过程中发现,这种儿童玩具每天的销售量 y (件 ) 与销售单价 x (元 ) 满足一次函数关系.当销售单价为35元时,每天的销售量为350件;当销售单价为40元时,每天的销售量为300件.

(1)求 y x 之间的函数关系式.

(2)当销售单价为多少时,该网店销售这种儿童玩具每天获得的利润最大,最大利润是多少?

来源:2019年辽宁省抚顺市中考数学试卷
  • 题型:未知
  • 难度:未知

某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第天的生产成本(元件)与(天之间的关系如图所示,第天该产品的生产量(件(天满足关系式

(1)第40天,该厂生产该产品的利润是  元;

(2)设第天该厂生产该产品的利润为元.

①求之间的函数关系式,并指出第几天的利润最大,最大利润是多少?

②在生产该产品的过程中,当天利润不低于2400元的共有多少天?

来源:2019年湖北省咸宁市中考数学试卷
  • 题型:未知
  • 难度:未知

某商品的进价为每件40元,在销售过程中发现,每周的销售量 y (件 ) 与销售单价 x (元 ) 之间的关系可以近似看作一次函数 y = kx + b ,且当售价定为50元 / 件时,每周销售30件,当售价定为70元 / 件时,每周销售10件.

(1)求 k b 的值;

(2)求销售该商品每周的利润 w (元 ) 与销售单价 x (元 ) 之间的函数解析式,并求出销售该商品每周可获得的最大利润.

来源:2020年四川省甘孜州中考数学试卷
  • 题型:未知
  • 难度:未知

某商店销售一种商品,经市场调查发现:该商品的周销售量(件是售价(元件)的一次函数,其售价、周销售量、周销售利润(元的三组对应值如表:

售价(元件)

50

60

80

周销售量(件

100

80

40

周销售利润(元

1000

1600

1600

注:周销售利润周销售量(售价进价)

(1)①求关于的函数解析式(不要求写出自变量的取值范围);

②该商品进价是  件;当售价是  件时,周销售利润最大,最大利润是  元.

(2)由于某种原因,该商品进价提高了,物价部门规定该商品售价不得超过65元件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求的值.

来源:2019年湖北省武汉市中考数学试卷
  • 题型:未知
  • 难度:未知

网络销售是一种重要的销售方式.某乡镇农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克10元.公司在试销售期间,调查发现,每天销售量 y ( kg ) 与销售单价 x (元 ) 满足如图所示的函数关系(其中 10 < x 30 )

(1)直接写出 y x 之间的函数关系式及自变量的取值范围.

(2)若农贸公司每天销售该特产的利润要达到3100元,则销售单价 x 应定为多少元?

(3)设每天销售该特产的利润为 W 元,若 14 < x 30 ,求:销售单价 x 为多少元时,每天的销售利润最大?最大利润是多少元?

来源:2019年辽宁省朝阳市中考数学试卷
  • 题型:未知
  • 难度:未知

小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,如图1,杯体 ACB 是抛物线的一部分,抛物线的顶点 C y 轴上,杯口直径 AB = 4 ,且点 A B 关于 y 轴对称,杯脚高 CO = 4 ,杯高 DO = 8 ,杯底 MN x 轴上.

(1)求杯体 ACB 所在抛物线的函数表达式(不必写出 x 的取值范围);

(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯体 A ' CB ' 所在抛物线形状不变,杯口直径 A ' B ' / / AB ,杯脚高 CO 不变,杯深 CD ' 与杯高 OD ' 之比为0.6,求 A ' B ' 的长.

来源:2021年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.

(1)求四月和五月这两个月中该景区游客人数平均每月增长百分之几;

(2)若该景区仅有 A B 两个景点,售票处出示的三种购票方式如下表所示:

购票方式

可游玩景点

A

B

A 和     B

门票价格

100元     /

80元     /

160元     /

据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万,并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.

①若丙种门票价格下降10元,求景区六月份的门票总收入;

②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?

来源:2021年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.

(1)求甲、乙两种商品每箱各盈利多少元?

(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?

来源:2021年山东省济宁市中考数学试卷
  • 题型:未知
  • 难度:未知

某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元 / 千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量 y (千克)与销售单价 x (元 / 千克)之间的函数关系如图所示.

(1)求 y x 的函数关系式,并写出 x 的取值范围;

(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?

(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.

来源:2018年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

结合西昌市创建文明城市要求,某小区业主委员会决定把一块长 80 m ,宽 60 m 的矩形空地建成花园小广场,设计方案如图所示,阴影区域为绿化区(四块绿化区为全等的直角三角形),空白区域为活动区,且四周出口宽度一样,其宽度不小于 36 m ,不大于 44 m ,预计活动区造价60元 / m 2 ,绿化区造价50元 / m 2 ,设绿化区域较长直角边为 xm

(1)用含 x 的代数式表示出口的宽度;

(2)求工程总造价 y x 的函数关系式,并直接写出 x 的取值范围;

(3)如果业主委员会投资28.4万元,能否完成全部工程?若能,请写出 x 为整数的所有工程方案;若不能,请说明理由.

(4)业主委员会决定在(3)设计的方案中,按最省钱的一种方案,先对四个绿化区域进行绿化,在实际施工中,每天比原计划多绿化 11 m 2 ,结果提前4天完成四个区域的绿化任务,问原计划每天绿化多少 m 2

来源:2018年四川省凉山州中考数学试卷
  • 题型:未知
  • 难度:未知

某公司研发了一款成本为60元的保温饭盒,投放市场进行试销售,按物价部门规定,其销售单价不低于成本,但销售利润不高于 65 % ,市场调研发现,保温饭盒每天的销售数量 y (个 ) 与销售单价 x (元 ) 满足一次函数关系;当销售单价为70元时,销售数量为160个;当销售单价为80元时,销售数量为140个(利润率 = 利润 成本 × 100 \ % )

(1)求 y x 之间的函数关系式;

(2)当销售单价定为多少元时,公司每天获得利润最大,最大利润为多少元?

来源:2016年辽宁省本溪市中考数学试卷
  • 题型:未知
  • 难度:未知

某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表:

产品

每件售价(万元)

每件成本(万元)

每年其他费用(万元)

每年最大产销量(件)

6

a

20

200

20

10

40+0.05x2

80

其中a为常数,且 3 a 5

(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1y2x的函数关系式;

(2)分别求出产销两种产品的最大年利润;

(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.

来源:2016年湖北省武汉市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学二次函数的应用解答题