在矩形中,连结,点从点出发,以每秒1个单位的速度沿着的路径运动,运动时间为(秒.过点作于点,在矩形的内部作正方形.
(1)如图,当时,
①若点在的内部,连结、,求证:;
②当时,设正方形与的重叠部分面积为,求与的函数关系式;
(2)当,时,若直线将矩形的面积分成两部分,求的值.
已知: 是等腰三角形, , .点 在边 上,点 在边 上(点 、点 不与所在线段端点重合), ,连接 , ,射线 ,延长 交射线 于点 ,点 在直线 上,且 .
(1)如图,当 时
①求证: ;
②求 的度数;
(2)当 ,其它条件不变时, 的度数是 ;(用含 的代数式表示)
(3)若 是等边三角形, ,点 是 边上的三等分点,直线 与直线 交于点 ,请直接写出线段 的长.
如图,的对角线、相交于点,经过,分别交、于点、,的延长线交的延长线于.
(1)求证:;
(2)若,,,求的长.
已知 的两边分别与 相切于点 , , 的半径为 .
(1)如图1,点 在点 , 之间的优弧上, ,求 的度数;
(2)如图2,点 在圆上运动,当 最大时,要使四边形 为菱形, 的度数应为多少?请说明理由;
(3)若 交 于点 ,求第(2)问中对应的阴影部分的周长(用含 的式子表示).
如图,在正方形中,点是上的一点,点是延长线上的一点,且,连结、、.
(1)求证:;
(2)若,请求出的长.
如图1,以 的较短边 为一边作菱形 ,使点 落在边 上,连接 ,交 于点 .
(1)猜想 与 的数量关系,并说明理由;
(2)延长 、 交于点 ,其他条件不变:
①如图2,若 ,求 的值;
②如图3,若 ,直接写出 的值(用含 的三角函数表示)
如图,在 中, , 是对角线 上的两点(点 在点 左侧),且 .
(1)求证:四边形 是平行四边形;
(2)当 , , 时,求 的长.
如图,在 中, , 与 相切于点 ,过点 作 的垂线交 的延长线于点 ,交 于点 ,连结 .
(1)求证: 是 的切线.
(2)若 , ,求 的长.
如图, 为等腰直角三角形,延长 至点 使 , 是矩形,其对角线 , 交于点 ,连接 交 于点 .
(1)求证: ;
(2)求 的值.
如图,在 中,过 点作 于点 ,交 于点 ,过 点作 于点 ,交 于点 .
(1)求证:四边形 是平行四边形;
(2)已知 , ,求 的长.
在菱形 中,点 为对角线 上一点,点 , 在直线 上,且 , .
(1)如图1,求证: ;
(2)如图2,当 时,求证: ;
(3)如图3,当 ,点 在线段 上时,线段 , , 的数量关系如何?(请直接写出你猜想的结论)
试题篮
()