如图,已知△ ABC中, D为 AB的中点.
(1)请用尺规作图法作边 AC的中点 E,并连接 DE(保留作图痕迹,不要求写作法);
(2)在(1)的条件下,若 DE=4,求 BC的长.
如图, 为 的直径, 切 于点 ,与 的延长线交于点 , 交 于点 ,连接 、 、 ,过点 作 于点 ,延长 交 于点 .
(1)求证: ;
(2)连接 ,若 , ,求线段 的长.
如图,在 中,点 为 的中点,弦 、 互相垂直,垂足为 , 分别与 、 相交于点 、 ,连接 、 .
(1)求证: 为 的中点.
(2)若 的半径为8, 的度数为 ,求线段 的长.
如图,已知 , , ,点 为 的中点,过点 作 的垂线,垂足为点 ,过点 、 、 作 交 于点 ,连接 、 .
(1)求证: 为 的切线;
(2)若 , ,求 的长.
如图,以等边三角形 的 边为直径画圆,交 于点 , 于点 ,连接 ,且 .
(1)求证: 是 的切线;
(2)求线段 的长度.
在中,,,,,分别是,,的中点,连接,.
(1)求证:四边形是矩形;
(2)请用无刻度的直尺在图中作出的平分线(保留作图痕迹,不写作法).
性质探究
如图(1),在等腰三角形中,,则底边与腰的长度之比为 .
理解运用
(1)若顶角为的等腰三角形的周长为,则它的面积为 ;
(2)如图(2),在四边形中,,在边,上分别取中点,,连接.若,,求线段的长.
类比拓展
顶角为的等腰三角形的底边与一腰的长度之比为 .(用含的式子表示)
如图,在△ ABC中, BD、 CE分别是 AC、 AB上的中线, BD与 CE相交于点 O.
(1)利用尺规作图取线段 CO的中点.(保留作图痕迹,不写作法);
(2)猜想 CO与 OE的长度有什么关系,并说明理由.
性质探究
如图①,在等腰三角形中,,则底边与腰的长度之比为 .
理解运用
(1)若顶角为的等腰三角形的周长为,则它的面积为 ;
(2)如图②,在四边形中,.
①求证:;
②在边,上分别取中点,,连接.若,,直接写出线段的长.
类比拓展
顶角为的等腰三角形的底边与一腰的长度之比为 (用含的式子表示).
如图1,在中,,,点,分别在边,上,,连接,点,,分别为,,的中点.
(1)观察猜想:图1中,线段与的数量关系是 ,位置关系是 ;
(2)探究证明:把绕点逆时针方向旋转到图2的位置,连接,,,判断的形状,并说明理由;
(3)拓展延伸:把绕点在平面内自由旋转,若,,请直接写出面积的最大值.
如图1,在四边形 中,如果对角线 和 相交并且相等,那么我们把这样的四边形称为等角线四边形.
(1)①在“平行四边形、矩形、菱形”中, 一定是等角线四边形(填写图形名称);
②若 、 、 、 分别是等角线四边形 四边 、 、 、 的中点,当对角线 、 还要满足 时,四边形 是正方形.
(2)如图2,已知 中, , , , 为平面内一点.
①若四边形 是等角线四边形,且 ,则四边形 的面积是 ;
②设点 是以 为圆心,1为半径的圆上的动点,若四边形 是等角线四边形,写出四边形 面积的最大值,并说明理由.
如图,在 中, 是 边上的中线,以 为直径的 交 于点 ,过 作 于点 ,交 的延长线于点 ,过点 作 于 .
(1)求证: ;
(2)求证:直线 是 的切线.
试题篮
()