优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 平行线分线段成比例 / 解答题
初中数学

如图,直线与反比例函数的图象相交于点A(a,3),且与x轴相交于点B.

(1)求该反比例函数的表达式;
(2)若P为y轴上的点,且△AOP的面积是△AOB的面积的,请求出点P的坐标.
(3)写出直线向下平移2个单位的直线解析式,并求出这条直线与双曲线的交点坐标。

  • 题型:未知
  • 难度:未知

如图,反比例函数在第一象限的图象上有两点,它们的横坐标分别是2,6,
求△的面积.

  • 题型:未知
  • 难度:未知

【阅读理解】对于任意正实数a、b,因为≥0,所以≥0,所以,只有当a=b时,等号成立.
【获得结论】在≥2(a、b均为正实数)中,若ab为定值p,则≥2,只有当a=b时,有最小值2
根据上述内容,回答下列问题:若>0,只有当=      时, +有最小值      
【探索应用】如图,已知A(-3,0),B(0,-4),P为 双曲线上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D。求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.

  • 题型:未知
  • 难度:未知

如图,反比例函数的图象与一次函数的图象交于两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当取何值时,反比例函数的值大于一次函数的值

  • 题型:未知
  • 难度:未知

(本题12分)如图,一次函数与反比例函数的图象交于A(2,3),B(-3,n)两点.

(1)求一次函数与反比例函数的解析式;
(2)根据所给条件,请直接写出不等式的解集;
(3)过点B作BC⊥x轴,垂足为C,求

  • 题型:未知
  • 难度:未知

如图,学校打算用材料围建一个面积为18平方米的矩形ABCD的生物园,用来饲养小兔,其中矩形ABCD的一边AB靠墙,墙长为8米,设AD的长为y米, CD的长为x米.

(1)求y与x之间的函数表达式;
(2)若围成矩形ABCD的生物园的三边材料总长不超过18米,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.

  • 题型:未知
  • 难度:未知

直线y=x+b与x轴交于点C(4,0),与轴交于点B,并与双曲线y=(x<0)交于点A(-1,n)。

(1)求直线与双曲线的解析式。
(2)连接OA,求∠OAB的正弦值。
(3)若点D在x轴的正半轴上,是否存在以点D、C、B构成的三角形与△OAB相似?若存在求出D点的坐标,若不存在,请说明理由。

  • 题型:未知
  • 难度:未知

如图,平行于y轴的直尺(一部分)与反比例函数)的图象交于点A、C,与x轴交于点B、D,连结AC.点A、B的刻度分别为5、2(单位:cm),直尺的宽度为2cm,OB=2cm.

(1)求这个反比例函数的解析式;
(2)求梯形的面积.

  • 题型:未知
  • 难度:未知

如图,直线与双曲线(k>0,x>0)交于点A,将直线向上平移4个单位长度后,与y轴交于点C,与双曲线(k>0,x>0)交于点B.

(1)设点B的横坐标分别为b,试用只含有字母b 的代数式表示k;
(2)若OA=3BC,求k的值.

  • 题型:未知
  • 难度:未知

(本题12分)如图,矩形ABOD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函数的图象分别相交于点E,F,且DE=2.过点E作EH⊥x轴于点H,过点F作FG⊥EH于点G.回答下面的问题:

(1)该反比例函数的解析式是什么?
(2)当四边形AEGF为正方形时,点F的坐标时多少?
(3)阅读合作学习内容,请解答其中的问题;
小亮进一步研究四边形AEGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?”
针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由.

  • 题型:未知
  • 难度:未知

(本小题满分12分)
如图①,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形, ,反比例函数(k>0)在第一象限内的图象经过点A,与BC交于点F

(1)若OA=10,求反比例函数解析式;
(2)若点F为BC的中点,且△AOF的面积S=12,求OA的长和点C的坐标;
(3)在(2)中的条件下,过点F作EF∥OB,交OA于点E(如图②),点P为直线EF上的一个动点,连接PA,PO 是否存在这样的点P,使以P、O、A为顶点的三角形是直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由

  • 题型:未知
  • 难度:未知

如图,已知一次函数与反比例函数的图象交于两点A(-1,6),B(a,3).

(1)求两个函数的解析式;
(2)结合图形,直接写出时-﹥0时的取值范围;
(3)如图2,梯形OBCE中,BC∥OE,过点C作CE⊥x轴于点E,CE和反比例函数的图象交于点P,当梯形OBCE的面积为9时,请求出点P的坐标.

  • 题型:未知
  • 难度:未知

如图,已知正比例函数y=x的图象与反比例函数y=(k>0)的图象交于A、B两点,
且点A的横坐标为4.

(1)求k的值;
(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;
(3)过原点O的另一条直线l交双曲线y=(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为24,求点P的坐标.

  • 题型:未知
  • 难度:未知

如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.

(1)求一次函数的解析式;
(2)根据图象直接写出的x的取值范围;
(3)求△AOB的面积.

  • 题型:未知
  • 难度:未知

实验数据显示:一般成人喝半斤低度白酒后,1.5小时内(包括1.5小时)其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x表示;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)表示(如图所示).

(1)求k的值.
(2)假设某驾驶员晚上在家喝完半斤低度白酒,求有多长时间其酒精含量不低于72毫克/百毫升?(用分钟表示)

  • 题型:未知
  • 难度:未知

初中数学平行线分线段成比例解答题