如图,在平面直角坐标系中,Rt△PBD的斜边PB落在y轴上,
tan∠BPD=.延长BD交轴于点C,过点D作DA⊥轴,垂足为A,PD与轴交于点E,OA=8,OB=6.
(1)求点C的坐标;
(2)若点D在反比例函数y =(k>0)的图象上,求反比例函数的解析式.
在直角坐标系中,已知点P是反比例函数(>0)图象上一个动点,以P为圆心的圆始终与轴相切,设切点为A.
(1)如图1,⊙P运动到与轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由.
(2)如图2,⊙P运动到与轴相交,设交点为B,C.当四边形ABCP是菱形时:
①求出点A,B,C的坐标.
②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的.若存在,试求出所有满足条件的M点的坐标,若不存在,试说明理由.
(8分)如图,四边形是平行四边形,点.反比例函数的图象经过点,点是一次函数的图象与该反比例函数图象的一个公共点.
(1)求反比例函数的解析式;
(2)通过计算,说明一次函数的图象一定过点;
(3)对于一次函数,当的增大而增大时,确定点横坐标的取值范围(不写过程,直接写出结果).
如图,在平面直角坐标系中,点A在第一象限,AB⊥x轴,B(2,0),tan∠AOB=,过点A的双曲线为,在x轴上取一点P,过点P作直线OA的垂线l,以直线l为对称轴,线段OB经轴对称变换后的对应线段O'B'.
(1)当点O'与点A重合时,求直线l的解析式:
(2)当点B'落在双曲线上时,求出点P的坐标.
如图,反比例函数(k为常数,且k≠5)经过点A(1,3).
(1)求反比例函数的解析式;
(2)在x轴正半轴上有一点B,若△AOB的面积为6,求直线AB的解析式.
如图,直线y=﹣x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1).
(1)求该反比例函数的关系式;
(2)设PC⊥y轴于点C,点A关于y轴的对称点为A′;
①求△A′BC的周长和sin∠BA′C的值;
②对大于1的常数m,求x轴上的点M的坐标,使得sin∠BMC=.
已知反比例函数y= (k≠0)的图象经过点(3,2).
(1)求这个函数的解析式;
(2)当-4<x<-1时,求y的取值范围.
如图,在平面直角坐标系中,反比例函数(>0)的图象和矩形ABCD的第一象限,AD平行于轴,且AB=2,AD=4,点A的坐标为(2,6) .
(1)直接写出B、C、D三点的坐标;
(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.
如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.
(1)求一次函数的解析式;
(2)根据图象直接写出的x的取值范围;
(3)求△AOB的面积.
在平面直角坐标系中,过点向轴作垂线,垂足为,连接.双曲线经过斜边的中点,与边交于点.
(1)求反比例函数的解析式;
(2)求△的面积.
(本题12分)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值。如对于任意正实数、x,可作变形:x+=(-)2+2,因为(-)2≥0,所以x+≥2(当x=时取等号).
记函数y=x+(a>0,x>0),由上述结论可知:当x=时,该函数有最小值为2.
直接应用: 已知函数y1=x(x>0)与函数y2 = (x>0),则当x= 时,y1+y2取得最小值为 .
变形应用: 已知函数y1=x+1(x>-1)与函数y2=(x+1)2+4(x>-1),求 的最小值,并指出取得该最小值时相应的x的值.
实际应用:汽车的经济时速是指汽车最省油的行驶速度。某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油(+)升。若该汽车以每小时x公里的速度匀速行驶,1小时的耗油量为y升.
①求y关于x的函数关系式(写出自变量x的取值范围);
②求该汽车的经济时速及经济时速的百公里耗油量(结果保留小数点后一位).
如图,已知直线y=4-x与反比例函数y=(m>0,x>0)的图象交于A、B两点,与x轴、y轴分别相交于C、D两点.
(1)如果点A的横坐标为1,利用函数图象求关于x的不等式4-x<的解集;
(2)如果点A的横坐标仍然为1,是否存在以AB为直径的圆经过点P(1,0)?若存在,求出m的值;若不存在,请说明理由.
某车队要把4000吨货物运到雅安地震灾区(方案定后,每天的运量不变)。
(1)从运输开始,每天运输的货物吨数n(单位:吨)与运输时间t(单位:天)之间有怎样的函数关系式?
(2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成任务,求原计划完成任务的天数。
如图,一次函数y=kx+b的图象与坐标轴分别交于点E、F,与双曲线交于点P(-1,n),且F是PE的中点.
(1)求直线的解析式;
(2)若直线x=a与交于点A,与双曲线交于点B(不同于A),问a为何值时,PA=PB?
如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴上,顶点C在y轴上,D是BC的中点,过点D的反比例函数图象交AB于E点,连接DE。若OD=5,tan∠COD=。
(1)求过点D的反比例函数的解析式;
(2)求△DBE的面积;
(3)x轴上是否存在点P使△OPD为直角三角形,若存在,请直接写出P点的坐标。若不存在,请说明理由;
试题篮
()