(本题10分)已知二次函数的图像与y轴交于点A,且经过点.
(1)求此二次函数的解析式;
(2)将点A沿x轴方向平移,使其落到该函数图像上另一点B处,求点B的坐标.
(本题满分14分,第(1)、(2)小题每小题满分5分,第(3)小题满分4分)
已知,在边长为6的正方形ABCD的两侧如图作正方形BEFG、正方形DMNK,恰好使得N、A、F三点在一直线上,联结MF交线段AD于点P,联结NP,设正方形BEFG的边长为x,正方形DMNK的边长为y,
(1)求y关于x的函数关系式及自变量x的取值范围;
(2)当△NPF的面积为32时,求x的值;
(3)以P为圆心,AP为半径的圆能否与以G为圆心,GF为半径的圆相切,若能请求x的值,若不能,请说明理由。
(本题满分12分,每小题满分各6分)
已知:直角坐标系xoy中,将直线沿y轴向下平移3个单位长度后恰好经过B(-3,0)及y轴上的C点.若抛物线与轴交于A,B两点(点A在点B的右侧),且经过点C,(1)求直线及抛物线的解析式;(2)设抛物线的顶点为,点在抛物线的对称轴上,且,求点的坐标;
(本题14分)如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A点在B点左侧),与y轴交于C点,顶点为D.过点C、D的直线与x轴交于E点,以OE为直径画⊙O1,交直线CD于P、E两点.
(1)求E点的坐标;
(2)联结PO1、PA.求证:~;
(3) ①以点O2 (0,m)为圆心画⊙O2,使得⊙O2与⊙O1相切,当⊙O2经过点C时,求实数m
的值;
②在①的情形下,试在坐标轴上找一点O3,以O3为圆心画⊙O3,使得⊙O3与⊙O1、⊙O2同时相切.直接写出满足条件的点O3的坐标(不需写出计算过程).
(本题12分)如图,在平面直角坐标系中,等腰梯形OABC,CB//OA,且点A在x轴正半轴上.已知C(2,4),BC= 4.
(1)求过O、C、B三点的抛物线解析式,并写出顶点坐标和对称轴;
(2)经过O、C、B三点的抛物线上是否存在P点(与原点O不重合),使得P点到两坐标轴的
距离相等.如果存在,求出P点坐标;如果不存在,请说明理由.
如图,在平面直角坐标系中,抛物线与x轴的右交点为点A,与y
轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连结AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒)
(1)求A,B,C三点的坐标和抛物线的顶点的坐标;
(2)当t为何值时,四边形PQCA为平行四边形?
(3)请说明当0<t<4.5时,△PQF的面积总为定值;
(4)当0≤t≤4.5是否存在△PQF为等腰三角形?当t为何值时,△PQF为等腰三角形?(直接写出结果)
如图,小明将一张直角梯形纸片沿虚线剪开,得到矩形ABCD和三角形EGF两张纸片,测得AB=5,AD=4,EF=.在进行如下操作时遇到了下面的几个问题,请你帮助解决.
(1) 请你求出FG的长度.
(2)在(1)的条件下,小明先将三角形的边EG和矩形边AB重合,然后将△EFG沿直线BC向右平移,至F点与B重合时停止.在平移过程中,设G点平移的距离为x,两纸片重叠部分面积为.y,求在平移的整个过程中,y与x的函数关系式,并求当重叠部分面积为10时,平移距离x的值.
(3)在(2)的操作中,小明发现在平移过程中,虽然有时平移的距离不等,但两纸片重叠的面积却是相等的;而有时候平移的距离不等,两纸片重叠部分的面积也 不可能相等.请探索这两种情况下重叠部分面积y的范围(直接写出结果).
如图24,已知抛物线过点C(3,8),与轴交于A,B两点,与y轴交于点D(0,5).
(1)求该二次函数的关系式;
(2)求该抛物线的顶点M的坐标,并求四边形ABMD的面积;
如图,二次函数y=ax2+bx的图象经过点A(4,0)、B(2,2),连结OB、AB.
(1)求a, b;
(2)将△OAB绕点O按顺时针方向旋转135°得到△,则线段的中点P的坐标为 ▲ ,并判断点P是否在此二次函数的图象上,说明你的理由.
某电子科技公司开发一种新产品.产品投产上市一年来,公司经历了由
初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司
前12个月累积获得的利润y(万元)与销售时间第x(月)之间的函数关系(即前x个月的
利润总和y与x之间的关系)对应的点都在如图所示的图象上.该图象是某二次函数
y=a(x-h)2+k图象的一部分,点A为抛物线的顶点,且点A,B,C的横坐标分别为4,10,
12,点A,B的纵坐标分别为-16,20.
(1)求前12个月该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式;
(2)分别求出前9个月公司累积获得的利润和10月份一个月内所获得的利润;
(3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?
.(6分) 已知二次函数的图象与y轴交于点A(0,-6),与x轴的一个交点坐标是B(-2,0).
(1)求二次函数的关系式,并写出顶点坐标;
(2)将二次函数图象沿x轴向左平移个单位长度,求所得图象对应的函数关系式.
如图,抛物线F:y=ax2+bx+c的顶点为P,抛物线F与轴交于点A,
过点P作PD⊥x轴于点D,平移抛物线F使其经过点A、D得到抛物线F ′:
y=a′x2+b′x+c′,抛物线F ′与x轴的另一个交点为C.
(1)当a=1,b=-2,c=3时,
①写出点D的坐标 ▲ ;②求b: 的值;
(2)若a、b、c满足b2=ac,探究b: 的值是否为定值?若是定值请求出这个定值;若不是请说明理由.
如图,在直角坐标平面内,为原点,抛物线经过点(,),且顶点(,)在直线上.
(1)求的值和抛物线的解析式;
(2)如在线段上有一点,满足,在轴上有一点(,),联结,且直线与轴交于点.
①求直线的解析式;
②如点M是直线上的一个动点,在x轴上方的平面内有另一点N,且以O、E、M、N为顶点的四边形是菱形,请求出点N的坐标.(直接写出结果,不需要过程.)
已知二次函数y=ax2+bx+c的图象的顶点坐标为 (0,),且 ac=.
(1)若该函数的图象经过点(-1,-1).
①求使y<0成立的x的取值范围.
②若圆心在该函数的图象上的圆与x轴、y轴都相切,求圆心的坐标.
(2)经过A(0,p)的直线与该函数的图象相交于M,N两点,过M,N作x轴的垂线,垂足分别为M1,N1,设△MAM1,△AM1N1,△ANN1的面积分别为s1,s2,s3,是否存在m,使得对任意实数p≠0都有s22=ms1s3成立,若存在,求出m的值,若不存在,请说明理由.
如图15,抛物线与轴交于两点,与轴交于点,连结,若
(1)求抛物线对应的二次函数的解析式;
(2)在抛物线的对称轴上是否存在点,使若存在,求出点的坐标;若不存在,请说明理由;
(3)如图16所示,连结,是线段上(不与、重合)的一个动点.过点 作直线,交抛物线于点,连结、,设点的横坐标为.当t为何值时,的面积最大?最大面积为多少?
试题篮
()