如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.
(1)点M、N运动几秒后,M、N两点重合?
(2)点M、N运动几秒后,可得到等边三角形△AMN?
(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形?如存在,请求出此时M、N运动的时间.
如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.
(1)在图1中以格点为顶点画一个面积为5的等腰直角三角形;
(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、 ;
(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.
如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.
(1)求证:△BCD≌△FCE;
(2)若EF∥CD,求∠BDC的度数.
如果三角形有一边上的中线恰好等于这边的长,那么我们称这个三角形为“趣味三角形”.
(1)请用尺规作图的方式,画一个“趣味三角形”(保留作图痕迹);
(2)如图,在中,∠C=90°,AD是BC边上的中线,已知AC=,BC=2,请判断是不是“趣味三角形”,并说明理由。
已知:如图AB∥CD,PB和PC分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.求证:PA=PD.
如图,已知一张长方形纸片ABCD,AB∥CD ,AD=BC=1,AB=CD=5.在长方形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.
(1)请你动手操作,判断△MNK的形状一定是 ;
(2)问△MNK的面积能否小于?试说明理由;
(3)如何折叠能够使△MNK的面积最大?请你用备用图探究可能出现的情况,并求最大值.
如图,在等腰三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥DF,交AB于E,交BC于F.请解答下列问题:
(1)连结BD,试说明∠BDE=∠CDF;
(2)求证:BE=FC;
(2)若AE=4,FC=3,求EF长.
某航船以20海里/时的速度向正北方向航行,在A处看灯塔Q在航船北偏东45°处,半小时后航行到B处,此时灯塔Q与航船的距离最短.
(1)请你在图中画出点B的位置;
(2)求灯塔Q到A处的距离.(精确到0.1海里)
如图所示,要在公园(四边形ABCD)中建造一座音乐喷泉,喷泉位置应符合如下要求:
(1)到公园两个出入口A、C的距离相等;
(2)到公园两边围墙AB、AD的距离相等.
请你用尺规作图的方法确定喷泉的位置P.(不必写作法,但要保留作图痕迹)
如图,在直角坐标系中,已知、、、,点P从C点出发,沿着折线C﹣D﹣A运动到达点A时停止,过C点作直线GC⊥PC,且与过O、P、C三点的⊙M交于点G,连接OP、PG、OD.
(1)直接写出∠DCO的度数;
(2)当点P在线段CD上运动时,求△OPG的最小面积;
(3)设圆心M的纵坐标为n,试探索:在点P运动的整个过程中,n的取值范围.
如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(4,0),B(0,3).点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴正半轴的一动点,且满足OD=2OC,连结DE,以DE,DA为边作▱DEFA.
(1)当m=1时,求AE的长.
(2)当0<m<3时,若▱DEFA为矩形,求m的值;
(3)是否存在m的值,使得▱DEFA为菱形?若存在,直接写出m的值;若不存在,请说明理由.
如图,点A是5×5网格图形中的一个格点,图中每个小正方形的边长为1,请在网格中按下列要求操作:
(1)以点A为其中的一个顶点,在图(1)中画一个面积等于3的格点直角三角形;
(2)以点A为其中的一个顶点,在图(2)中画一个面积等于的格点等腰直角三角形.
如图,在△ABC中,AD⊥CA于点A,交BC于点D,M是CD的中点,连接AM,AM=AB.
(1)求证:CD=2AB;
(2)若AC=8,AB=5,求AD的长.
如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BE=CF,AD+EC=AB.
(1)求证:△DEF是等腰三角形;
(2)当∠A=40°时,求 ∠DEF的度数;
(3)△DEF可能是等腰直角三角形吗?为什么?
试题篮
()