优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 计算题
初中数学

在平面直角坐标系中, ΔABC 的三个顶点坐标分别为 A ( 2 , - 1 ) B ( 3 , - 3 ) C ( 0 , - 4 )

(1)画出 ΔABC 关于原点 O 成中心对称的△ A 1 B 1 C 1

(2)画出△ A 1 B 1 C 1 关于 y 轴对称的△ A 2 B 2 C 2

来源:2016年宁夏中考数学试卷
  • 题型:未知
  • 难度:未知

化简求值: ( a a + 2 + 1 a 2 - 4 ) ÷ a - 1 a + 2 + 1 a - 2 ,其中 a = 2 + 2

来源:2016年宁夏中考数学试卷
  • 题型:未知
  • 难度:未知

解不等式组 x + 1 > 3 x - 1 2 2 x - ( x - 3 ) 5

来源:2016年宁夏中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + bx + c ( b < 0 ) x 轴只有一个公共点.

(1)若抛物线与 x 轴的公共点坐标为 ( 2 , 0 ) ,求 a c 满足的关系式;

(2)设 A 为抛物线上的一定点,直线 l : y = kx + 1 - k 与抛物线交于点 B C ,直线 BD 垂直于直线 y = - 1 ,垂足为点 D .当 k = 0 时,直线 l 与抛物线的一个交点在 y 轴上,且 ΔABC 为等腰直角三角形.

①求点 A 的坐标和抛物线的解析式;

②证明:对于每个给定的实数 k ,都有 A D C 三点共线.

来源:2019年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5000元,但无需支付工时费.某公司计划购买1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在三年使用期内的维修次数,整理得下表;

维修次数

8

9

10

11

12

频数(台数)

10

20

30

30

10

(1)以这100台机器为样本,估计"1台机器在三年使用期内维修次数不大于10"的概率;

(2)试以这100台机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务?

来源:2019年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

某工厂为贯彻落实"绿水青山就是金山银山"的发展理念,投资组建了日废水处理量为 m 吨的废水处理车间,对该厂工业废水进行无害化处理.但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理.已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元.根据记录,5月21日,该厂产生工业废水35吨,共花费废水处理费370元.

(1)求该车间的日废水处理量 m

(2)为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过10元 / 吨,试计算该厂一天产生的工业废水量的范围.

来源:2019年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

先化简,再求值: ( x - 1 ) ÷ ( x - 2 x - 1 x ) ,其中 x = 2 + 1

来源:2019年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

解方程组 x - y = 5 2 x + y = 4

来源:2019年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + bx + c ( b < 0 ) x 轴只有一个公共点.

(1)若抛物线与 x 轴的公共点坐标为 ( 2 , 0 ) ,求 a c 满足的关系式;

(2)设 A 为抛物线上的一定点,直线 l : y = kx + 1 - k 与抛物线交于点 B C ,直线 BD 垂直于直线 y = - 1 ,垂足为点 D .当 k = 0 时,直线 l 与抛物线的一个交点在 y 轴上,且 ΔABC 为等腰直角三角形.

①求点 A 的坐标和抛物线的解析式;

②证明:对于每个给定的实数 k ,都有 A D C 三点共线.

来源:2019年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5000元,但无需支付工时费.某公司计划购买1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在三年使用期内的维修次数,整理得下表;

维修次数

8

9

10

11

12

频数(台数)

10

20

30

30

10

(1)以这100台机器为样本,估计“1台机器在三年使用期内维修次数不大于10”的概率;

(2)试以这100台机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务?

来源:2019年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

某工厂为贯彻落实“绿水青山就是金山银山“的发展理念,投资组建了日废水处理量为 m 吨的废水处理车间,对该厂工业废水进行无害化处理.但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理.已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元.根据记录,5月21日,该厂产生工业废水35吨,共花费废水处理费370元.

(1)求该车间的日废水处理量 m

(2)为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过10元 / 吨,试计算该厂一天产生的工业废水量的范围.

来源:2019年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

先化简,再求值: ( x - 1 ) ÷ ( x - 2 x - 1 x ) ,其中 x = 2 + 1

来源:2019年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

解方程组 x - y = 5 2 x + y = 4

来源:2019年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + bx + c 过点 A ( 0 , 2 ) ,且抛物线上任意不同两点 M ( x 1 y 1 ) N ( x 2 y 2 ) 都满足:当 x 1 < x 2 < 0 时, ( x 1 - x 2 ) ( y 1 - y 2 ) > 0 ;当 0 < x 1 < x 2 时, ( x 1 - x 2 ) ( y 1 - y 2 ) < 0 .以原点 O 为圆心, OA 为半径的圆与抛物线的另两个交点为 B C ,且 B C 的左侧, ΔABC 有一个内角为 60 °

(1)求抛物线的解析式;

(2)若 MN 与直线 y = - 2 3 x 平行,且 M N 位于直线 BC 的两侧, y 1 > y 2 ,解决以下问题:

①求证: BC 平分 MBN

②求 ΔMBC 外心的纵坐标的取值范围.

来源:2018年福建省中考数学试卷(B卷)
  • 题型:未知
  • 难度:未知

空地上有一段长为 a 米的旧墙 MN ,某人利用旧墙和木栏围成一个矩形菜园 ABCD ,已知木栏总长为100米.

(1)已知 a = 20 ,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙 AD 的长;

(2)已知 0 < a < 50 ,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园 ABCD 的面积最大,并求面积的最大值.

来源:2018年福建省中考数学试卷(B卷)
  • 题型:未知
  • 难度:未知

初中数学计算题