在一个2×2列联表中,由其数据计算得到K2的观测值k=13.097,则其两个变量间有关系的可能性为( )
A.99.9% | B.95% | C.90% | D.0 |
附表:
0.050 |
0.010 |
0.001 |
|
k |
3.841 |
6.635 |
10.828 |
某班主任对全班50名学生进行了作业量多少的调查,喜欢玩电脑游戏的同学认为作业多的有18人,认为作业不多的有9人,不喜欢玩电脑游戏的同学认为作业多的有8人,认为作业不多的有15人.
(1)根据以上数据建立一个的列联表;
(2)认为喜欢玩电脑游戏与认为作业量的多少有关系的把握大约是多少?(参考数值: )
某人摆一个摊位卖小商品,一周内出摊天数x与盈利y(百元),之间的一组数据关系见表:
2 |
3 |
4 |
5 |
6 |
|
2.2 |
3.8 |
5.5 |
6.5 |
7.0 |
已知,,
(1)在下面坐标系中画出散点图;
(2)计算,,并求出线性回归方程;
(3)在第(2)问条件下,估计该摊主每周7天要是天天出摊,盈利为多少?
某种产品的广告费支出与销售额(单位:万元)之间有如下对应数据:
2 |
4 |
5 |
6 |
8 |
|
30 |
40 |
60 |
50 |
70 |
(Ⅰ)求回归直线方程;(参考公式:b=,)
(Ⅱ)试预测广告费支出为10万元时,销售额多大?
(参考数据: )
下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据
3 |
4 |
5 |
6 |
|
2.5 |
3 |
4 |
4.5 |
()
(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据
x |
6 |
8 |
10 |
12 |
y |
2 |
3 |
5 |
6 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)试根据(II)求出的线性回归方程,预测记忆力为9的同学的判断力。
(相关公式:)
下表是降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对应数据,根据表中提供的数据,求出关于的线性回归方程:,那么表中的值为( )
A.3 | B.3.15 | C.4.5 | D.4 |
(本小题满分12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数(个) |
||||
加工的时间(小时) |
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出关于的线性回归方程,并在坐标系中画出回归直线;
(3)试预测加工个零件需要多少时间?
设某中学的女生体重(kg)与身高(cm)具有线性相关关系,根据一组样本数,用最小二乘法建立的线性回归直线方程为,给出下列结论,则错误的是( )
A.与具有正的线性相关关系 |
B.若该中学某女生身高增加1cm,则其体重约增加0.85kg |
C.回归直线至少经过样本数据中的一个 |
D.回归直线一定过样本点的中心点 |
A市积极倡导学生参与绿色环保活动,其中代号为“环保卫士——12369”的绿色环保活动小组对2014年1月——2014年12月(一年)内空气质量指数进行监测,下表是在这一年随机抽取的100天的统计结果:
指数API |
[0,50] |
(50,100] |
(100,150] |
(150,200] |
(200,250] |
(250,300] |
>300 |
空气质量 |
优 |
良 |
轻微污染 |
轻度污染 |
中度污染 |
中重度污染 |
重度污染 |
天数 |
4 |
13 |
18 |
30 |
9 |
11 |
15 |
(1)若A市某企业每天由空气污染造成的经济损失P(单位:元)与空气质量指数(记为t)的关系
为:,在这一年内随机抽取一天,估计该天经济损失元的概率;
(2)若本次抽取的样本数据有30天是在供暖季节,其中有8天为重度污染,完成列联表,并判断是
否有的把握认为A市本年度空气重度污染与供暖有关?
|
非重度污染 |
重度污染 |
合计 |
供暖季 |
|
|
|
非供暖季节 |
|
|
|
合计 |
|
|
100 |
下面临界值表供参考.
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
参考公式:,其中.
下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,求出关于的线性回归方程;
(3)已知该厂技术改造前吨甲产品能耗为吨标准煤;试根据(2)求出的线性回归方程,预测生产吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是( )
A.成绩 | B.视力 | C.智商 | D.阅读量 |
下表数据是水温度x(℃)对黄酮延长性y(%)效应的试验结果,y是以延长度计算的,且对于给定的x,y为变量.
x(℃) |
300 |
400 |
500 |
600 |
700 |
800 |
y(%) |
40 |
50 |
55 |
60 |
67 |
70 |
(1)求y关于x的回归方程;
(2)估计水温度是1 000 ℃时,黄酮延长性的情况.
(可能用到的公式:,,其中、是对回归直线方程中系数、按最小二乘法求得的估计值)
试题篮
()