优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用 / 填空题
高中数学

是两个不同的平面,是平面之外的两条不同直线,给出四个论断:
  ②  ③   ④。 以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:________________________________.

  • 题型:未知
  • 难度:未知

在梯形ABCD中,AB∥CD,AB平面α,CD平面α,则直线CD与平面α内的直线的位置关系可能是________.

  • 题型:未知
  • 难度:未知

类比此性质,如下图,在四面体P-ABC中,若PA、PB、PC两两垂直,底面ABC上的高为h,则得到的正确结论为________________.

  • 题型:未知
  • 难度:未知

已知平面α,β,直线.给出下列命题:
① 若,则
② 若,则
③ 若,则;   
④ 若,则.
其中是真命题的是         .(填写所有真命题的序号).

  • 题型:未知
  • 难度:未知

如图是一几何体的平面展开图,其中ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面四个结论:

①直线BE与直线CF异面;
②直线BE与直线AF异面;
③直线EF∥平面PBC;
④平面BCE⊥平面PAD.
其中正确的有__________.

  • 题型:未知
  • 难度:未知

如图,是圆O的直径,是圆周上不同于的任意一点,平面,则四面体的四个面中,直角三角形的个数有       个.

  • 题型:未知
  • 难度:未知

如图,在直角梯形ABCD中,,M、N分别是AD、BE的中点,将三角形ADE沿AE折起,下列说法正确的是            (填上所有正确的序号)。

①不论D折至何位置(不在平面ABC内)都有;
②不论D折至何位置都有;
③不论D折至何位置(不在平面ABC内)都有;
④在折起过程中,一定存在某个位置,使。     

  • 题型:未知
  • 难度:未知

如图所示,为正方体,给出以下五个结论:

平面
⊥平面
与底面所成角的正切值是
④二面角的正切值是
⑤过点且与异面直线 和 均成70°角的直线有2条.
其中,所有正确结论的序号为________.

  • 题型:未知
  • 难度:未知

是两个相交平面,则在下列命题中,真命题的序号为        .(写出所有真命题的序号)                  
①若直线,则在平面内,一定不存在与直线平行的直线.
②若直线,则在平面内,一定存在无数条直线与直线垂直.
③若直线,则在平面内,不一定存在与直线垂直的直线.
④若直线,则在平面内,一定存在与直线垂直的直线.

  • 题型:未知
  • 难度:未知

已知直线l⊥平面α,直线m平面β,有下列四个命题:①若α∥β,则l⊥m ;②若α⊥β,则l∥m;③若l∥m,则α⊥β;④若l⊥m,则α∥β.其中正确命题序号是      

  • 题型:未知
  • 难度:未知

是异面直线,下面四个命题:
①过至少有一个平面平行于
②过至少有一个平面垂直于
③至多有一条直线与都垂直;
④至少有一个平面与都平行.
其中正确命题的个数是          

  • 题型:未知
  • 难度:未知

如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点M在线段PQ上,E,F分别为AB,BC的中点,设异面直线EM与AF所成的角为,则的最大值为      

  • 题型:未知
  • 难度:未知

表示两条直线,表示两个平面,现给出下列命题:
①若,则;  
②若,则
③若,则; 
④若,则
其中真命题是       .(写出所有真命题的序号)

  • 题型:未知
  • 难度:未知

如图,长方体中,是边长为的正方形,与平面所成的角为,则棱的长为_______;二面角的大小为_______.

  • 题型:未知
  • 难度:未知

已知正方体,点分别是棱上的动点,观察直线

给出下列结论:
①对于任意点,存在点,使得;②对于任意点,存在点,使得
③对于任意点,存在点,使得;④对于任意点,存在点,使得
其中,所有正确结论的序号是__________.

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用填空题