优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 二次剩余 / 解答题
高中数学

(.(本题满分12分)
已知二次函数和“伪二次函数” ),
(I)证明:只要,无论取何值,函数在定义域内不可能总为增函数;
(II)在二次函数图象上任意取不同两点,线段中点的横坐标为,记直线的斜率为
i)求证:
(ii)对于“伪二次函数”,是否有(i)同样的性质?证明你的结论.

  • 题型:未知
  • 难度:未知

生产某种商品x件,所需费用为元,而售出x件这种商品时,每件的价格为p元,这里 (a,b是常数)。
(1)写出出售这种商品所获得的利润y元与售出这种商品的件数x间的函数关系式;
(2)如果生产出来的这种商品都能卖完,那么当产品是150件时,所获得的利润最大,并且这时的价格是40元,求a,b的值。

  • 题型:未知
  • 难度:未知

,函数。若都成立,求的取值范围。

  • 题型:未知
  • 难度:未知

(本题满分16分)
已知函数
(Ⅰ)若函数是定义域上的单调函数,求实数的最小值;
(Ⅱ)在函数的图象上是否存在不同两点,线段的中点的横坐标为,直线的斜率为,有成立?若存在,请求出的值;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

(本小题满分12分)
已知函数.其中
(1)若函数的图像的一个公共点恰好在x轴上,求的值;w
(2)若函数图像相交于不同的两点A、B,O为坐标原点,试问:△OAB的面积S有没有最值?如果有,求出最值及所对应的的值;如果没有,请说明理由.
(3)若是方程的两根,且满足
证明:当时,

  • 题型:未知
  • 难度:未知

已知函数f(x)=,aR。
(I)若点P(0,2)在函数f(x)的图象上,求a的值和函数f(x)的极小值;
(II)若函数f(x)在(1,1)上是单调递减函数,求a的最大值

  • 题型:未知
  • 难度:未知

(本小题满分14分)
设函数
(Ⅰ)若函数的定义域为,求的值域;
(Ⅱ)若定义域为[aa+1]时,的值域是,求实数a的值。

  • 题型:未知
  • 难度:未知

,函数.
(Ⅰ)当时,求函数的单调增区间;
(Ⅱ)若时,不等式恒成立,实数的取值范围

  • 题型:未知
  • 难度:未知

(本小题满分14分)
设函数.
(1) 试问函数f(x)能否在x=-1时取得极值?说明理由;
(2) 若a=-1,当x∈[-3,4]时,函数f(x)与g(x)的图像有两个公共点,求c的取值范围.

  • 题型:未知
  • 难度:未知

(本小题满分12分)
已知函数
(Ⅰ)设两曲线有公共点,且在公共点处的切线相同,若,试建立关于的函数关系式;
(Ⅱ)若在(0,4)上为单调函数,求的取值范围.

  • 题型:未知
  • 难度:未知

(本小题满分12分)
设函数
(Ⅰ)求的最小值
(Ⅱ)若恒成立,求实数的取值范围.

  • 题型:未知
  • 难度:未知

已知函数,其中常数
(I)若处取得极值,求a的值;
(II)求的单调递增区间;
(III)已知表示的导数,若
且满足,试比较的大小,并加以证明。

  • 题型:未知
  • 难度:未知

二次函数满足
(1)求函数的解析式;
(2)在区间上,的图象恒在的图象上方,试确定实数的取值范围。

  • 题型:未知
  • 难度:未知

已知函数
为实数,),
(Ⅰ)若,且函数的值域为,求的表达式;
(Ⅱ)在(Ⅰ)的条件下,当时,是单调函数,求实数
的取值范围;
(Ⅲ)设,且函数为偶函数,判断
否大于

  • 题型:未知
  • 难度:未知

(本小题满分14分)
  已知:函数),
  (1)若函数图象上的点到直线距离的最小值为,求的值;
  (2)关于的不等式的解集中的整数恰有3个,求实数的取值范围;
  (3)对于函数定义域上的任意实数,若存在常数,使得不等式都成立,则称直线为函数的“分界线”。设,试探究是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

高中数学二次剩余解答题