优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 第二数学归纳法
高中数学

已知f(n)=1+++…+(n∈N*),用数学归纳法证明f(2n)>时,f(2k+1)-f(2k)等于   .

  • 题型:未知
  • 难度:未知

已知多项式f(n)=n5n4n3n.
(1)求f(-1)及f(2)的值;
(2)试探求对一切整数nf(n)是否一定是整数?并证明你的结论.

  • 题型:未知
  • 难度:未知

2013年我国汽车拥有量已超过2亿(目前只有中国和美国超过2亿),为了控制汽车尾气对环境的污染,国家鼓励和补贴购买小排量汽车的消费者,同时在部分地区采取对新车限量上号.某市采取对新车限量上号政策,已知2013年年初汽车拥有量为=100万辆),第年(2013年为第1年,2014年为第2年,依次类推)年初的拥有量记为,该年的增长量的乘积成正比,比例系数为其中=200万.
(1)证明:
(2)用表示;并说明该市汽车总拥有量是否能控制在200万辆内.

  • 题型:未知
  • 难度:未知

用数学归纳法证明:(n+1)+(n+2)+…+(n+n)=的第二步中,当n=k+1时等式左边与n=k时的等式左边的差等于             .

  • 题型:未知
  • 难度:未知

在应用数学归纳法证明凸n变形的对角线为条时,第一步检验n等于( )

A.1 B.2 C.3 D.0
  • 题型:未知
  • 难度:未知

(本小题满分15分)已知函数
(1)当时,求最小值;
(2)若存在单调递减区间,求的取值范围;
(3)求证:).

  • 题型:未知
  • 难度:未知

数列的前项组成集合,从集合中任取个数,其所有可能的个数的乘积的和为(若只取一个数,规定乘积为此数本身),记.例如:当时,;当时,
(Ⅰ)求
(Ⅱ)猜想,并用数学归纳法证明.

  • 题型:未知
  • 难度:未知

数列的前项组成集合,从集合中任取个数,其所有可能的个数的乘积的和为(若只取一个数,规定乘积为此数本身),记.例如:当时,;当时,
(Ⅰ)求
(Ⅱ)猜想,并用数学归纳法证明.

  • 题型:未知
  • 难度:未知

如图,在圆内:画1条弦,把圆分成2部分;画2条相交的弦,把圆分成4部分,画3条两两相交的弦,把圆最多分成7部分;…,画条两两相交的弦,把圆最多分成            部分.

  • 题型:未知
  • 难度:未知

已知函数
(Ⅰ)若函数在其定义域上为单调函数,求的取值范围;
(Ⅱ)若函数的图像在处的切线的斜率为0,,已知求证:
(Ⅲ)在(2)的条件下,试比较的大小,并说明理由.      

  • 题型:未知
  • 难度:未知

是定义在正整数集上的函数,且满足:“当成立时,总可推出成立”,那么,下列命题总成立的是 (  )

A.若成立,则成立
B.若成立,则当时,均有成立
C.若成立,则成立
D.若成立,则当时,均有成立
  • 题型:未知
  • 难度:未知

用数学归纳法证明),在验证当n=1时,等式左边应为

A.1 B.1+a C.1+a+a2 D.1+a+a2+a3
  • 题型:未知
  • 难度:未知

用数学归纳法证明不等式,第二步由k到k+1时不等式左边需增加(      )

A. B.
C. D.
  • 题型:未知
  • 难度:未知

用数学归纳法证明等式时,第一步验证时,左边应取的项是

A.1 B. C. D.
  • 题型:未知
  • 难度:未知

高中数学第二数学归纳法试题