优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 解答题
高中数学

已知数列{an},{bn},{cn}中, a 1 = b 1 = c 1 = 1 , c n = a n + 1 - a n , c n + 1 = b n b n + 2 c n ( n N * )

(Ⅰ)若数列{bn}为等比数列,且公比 q > 0 ,且 b 1 + b 2 = 6 b 3 ,求qan的通项公式;

(Ⅱ)若数列{bn}为等差数列,且公差 d > 0 ,证明: c 1 + c 2 + + c n < 1 + 1 d

来源:2020年全国统一高考数学试卷(浙江卷)
  • 题型:未知
  • 难度:未知

如图,三棱台 DEF- ABC中,面 ADFC⊥面 ABC,∠ ACB=∠ ACD=45°, DC=2 BC

(I)证明: EFDB

(II)求 DF与面 DBC所成角的正弦值.

来源:2020年全国统一高考数学试卷(浙江卷)
  • 题型:未知
  • 难度:未知

在锐角△ ABC中,角 ABC的对边分别为 abc,且 2 b sin A = 3 a

(I)求角 B

(II)求cos A+cos B+cos C的取值范围.

来源:2020年全国统一高考数学试卷(浙江卷)
  • 题型:未知
  • 难度:未知

已知 a n 是无穷数列.给出两个性质:

①对于 a n 中任意两项 a i , a j ( i > j ) ,在 a n 中都存在一项 a m ,使 a i 2 a j = a m

②对于 a n 中任意项 a n ( n 3 ) ,在 a n 中都存在两项 a k , a l ( k > l ) .使得 a n = a k 2 a l

(Ⅰ)若 a n = n ( n = 1 , 2 , ) ,判断数列 a n 是否满足性质①,说明理由;

(Ⅱ)若 a n = 2 n - 1 ( n = 1 , 2 , ) ,判断数列 a n 是否同时满足性质①和性质②,说明理由;

(Ⅲ)若 a n 是递增数列,且同时满足性质①和性质②,证明: a n 为等比数列.

来源:2020年全国统一高考数学试卷(北京卷)
  • 题型:未知
  • 难度:未知

已知椭圆 C : x 2 a 2 + y 2 b 2 = 1 过点 A ( - 2 , - 1 ) ,且 a = 2 b

(Ⅰ)求椭圆C的方程:

(Ⅱ)过点的直线l交椭圆C于点 M , N ,直线 MA , NA 分别交直线 x = - 4 于点 P , Q .求 | PB | | BQ | 的值.

来源:2020年全国统一高考数学试卷(北京卷)
  • 题型:未知
  • 难度:未知

已知函数 f ( x ) = 12 - x 2

(Ⅰ)求曲线 y = f ( x ) 的斜率等于 - 2 的切线方程;

(Ⅱ)设曲线 y = f ( x ) 在点 ( t , f ( t ) ) 处的切线与坐标轴围成的三角形的面积为 S ( t ) ,求 S ( t ) 的最小值.

来源:2020年全国统一高考数学试卷(北京卷)
  • 题型:未知
  • 难度:未知

某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:


男生

女生

支持

不支持

支持

不支持

方案一

200人

400人

300人

100人

方案二

350人

250人

150人

250人

假设所有学生对活动方案是否支持相互独立.

(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;

(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;

(Ⅲ)将该校学生支持方案的概率估计值记为 p 0 ,假设该校年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为 p 1 ,试比较 p 0 p 1 的大小.(结论不要求证明)

来源:2020年全国统一高考数学试卷(北京卷)
  • 题型:未知
  • 难度:未知

ABC 中, a + b = 11 ,再从条件①、条件②这两个条件中选择一个作为己知,求:

(Ⅰ)a的值:

(Ⅱ) sin C ABC 的面积.

条件①: c = 7 , cos A = - 1 7

条件②: cos A = 1 8 , cos B = 9 16

注:如果选择条件①和条件②分别解答,按第一个解答计分.

来源:2020年全国统一高考数学试卷(北京卷)
  • 题型:未知
  • 难度:未知

如图,在正方体 ABCD - A 1 B 1 C 1 D 1 中, E 的中点.

(Ⅰ)求证: B C 1 / / 平面 A D 1 E

(Ⅱ)求直线 A A 1 与平面 A D 1 E 所成角的正弦值.

来源:2020年全国统一高考数学试卷(北京卷)
  • 题型:未知
  • 难度:未知

已知函数 f ( x ) = | 3 x + 1 | - 2 | x - 1 |

(1)画出 y = f ( x ) 的图像;

(2)求不等式 f ( x ) > f ( x + 1 ) 的解集.

来源:2020年全国统一高考文科数学试卷(新课标Ⅰ)
  • 题型:未知
  • 难度:未知

在直角坐标系 xOy 中,曲线 C 1 的参数方程为 ( t 为参数 ) .以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,曲线 C 2 的极坐标方程为 4 ρ cos θ - 16 ρ sin θ + 3 = 0

(1)当 k = 1 时, C 1 是什么曲线?

(2)当 k = 4 时,求 C 1 C 2 的公共点的直角坐标.

来源:2020年全国统一高考文科数学试卷(新课标Ⅰ)
  • 题型:未知
  • 难度:未知

已知AB分别为椭圆E x 2 a 2 + y 2 = 1 a>1)的左、右顶点,GE的上顶点, AG GB = 8 P为直线x=6上的动点,PAE的另一交点为CPBE的另一交点为D

(1)求E的方程;

(2)证明:直线CD过定点.

来源:2020年全国统一高考文科数学试卷(新课标Ⅰ)
  • 题型:未知
  • 难度:未知

已知函数 f ( x ) = e x - a ( x + 2 ) .

(1)当 a = 1 时,讨论 f ( x ) 的单调性;

(2)若 f ( x ) 有两个零点,求 a 的取值范围.

来源:2020年全国统一高考文科数学试卷(新课标Ⅰ)
  • 题型:未知
  • 难度:未知

如图, D 为圆锥的顶点, O 是圆锥底面的圆心, ABC 是底面的内接正三角形, P DO 上一点,∠ APC=90°.

(1)证明:平面 PAB⊥平面 PAC

(2)设 DO= 2 ,圆锥的侧面积为 3 π ,求三棱锥 PABC的体积.

来源:2020年全国统一高考文科数学试卷(新课标Ⅰ)
  • 题型:未知
  • 难度:未知

ABC 的内角ABC的对边分别为abc.已知B=150°.

(1)若a= 3 cb=2 7 ,求 ABC 的面积;

(2)若sinA+ 3 sinC= 2 2 ,求C.

来源:2020年全国统一高考文科数学试卷(新课标Ⅰ)
  • 题型:未知
  • 难度:未知

高中数学解答题