在极坐标系中,已知点 在直线 上,点 在圆 上(其中 , ).
(1)求 , 的值
(2)求出直线 与圆 的公共点的极坐标.
平面上点 在矩阵 对应的变换作用下得到点 .
(1)求实数 , 的值;
(2)求矩阵 的逆矩阵 .
已知数列 的首项a1=1,前n项和为Sn.设λ与k是常数,若对一切正整数n,均有 成立,则称此数列为“λ–k”数列.
(1)若等差数列 是“λ–1”数列,求λ的值;
(2)若数列 是“ ”数列,且an>0,求数列 的通项公式;
(3)对于给定的λ,是否存在三个不同的数列 为“λ–3”数列,且an≥0?若存在,求λ的取值范围;若不存在,说明理由,
已知关于x的函数 与 在区间D上恒有 .
(1)若 ,求h(x)的表达式;
(2)若 ,求k的取值范围;
(3)若 求证: .
在平面直角坐标系 xOy中,已知椭圆 的左、右焦点分别为 F 1, F 2,点 A在椭圆 E上且在第一象限内, AF 2⊥ F 1 F 2,直线 AF 1与椭圆 E相交于另一点 B.
(1)求△ AF 1 F 2的周长;
(2)在 x轴上任取一点 P,直线 AP与椭圆 E的右准线相交于点 Q,求 的最小值;
(3)设点 M在椭圆 E上,记△ OAB与△ MAB的面积分别为 S 1, S 2,若 S 2=3 S 1,求点 M的坐标.
某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底 O在水平线 MN上、桥 AB与 MN平行, 为铅垂线( 在 AB上).经测量,左侧曲线 AO上任一点 D到 MN的距离 (米)与 D到 的距离 a(米)之间满足关系式 ;右侧曲线 BO上任一点 F到 MN的距离 (米)与 F到 的距离 b(米)之间满足关系式 .已知点 B到 的距离为40米.
(1)求桥 AB的长度;
(2)计划在谷底两侧建造平行于 的桥墩 CD和 EF,且 CE为80米,其中 C, E在 AB上(不包括端点).桥墩 EF每米造价 k(万元)、桥墩 CD每米造价 (万元)( k>0).问 为多少米时,桥墩 CD与 EF的总造价最低?
在△ ABC中,角 A, B, C的对边分别为 a, b, c,已知 .
(1)求 的值;
(2)在边 BC上取一点 D,使得 ,求 的值.
在三棱柱 ABC- A 1 B 1 C 1中, AB⊥ AC, B 1 C⊥平面 ABC, E, F分别是 AC, B 1 C的中点.
(1)求证: EF∥平面 AB 1 C 1;
(2)求证:平面 AB 1 C⊥平面 ABB 1.
已知函数 , 为 的导函数.
(Ⅰ)当 时,
(i)求曲线 在点 处的切线方程;
(ii)求函数 的单调区间和极值;
(Ⅱ)当 时,求证:对任意的 ,且 ,有 .
已知 为等差数列, 为等比数列, .
(Ⅰ)求 和 的通项公式;
(Ⅱ)记 的前 项和为 ,求证: ;
(Ⅲ)对任意的正整数 ,设 求数列 的前 项和.
已知椭圆 的一个顶点为 ,右焦点为 ,且 ,其中 为原点.
(Ⅰ)求椭圆方程;
(Ⅱ)已知点 满足 ,点 在椭圆上( 异于椭圆的顶点),直线 与以 为圆心的圆相切于点 ,且 为线段 的中点.求直线 的方程.
如图,在三棱柱 中, 平面 , ,点 分别在棱 和棱 上,且 为棱 的中点.
(Ⅰ)求证: ;
(Ⅱ)求二面角 的正弦值;
(Ⅲ)求直线 与平面 所成角的正弦值.
已知 ,函数 ,其中e=2.71828…为自然对数的底数.
(Ⅰ)证明:函数在 上有唯一零点;
(Ⅱ)记x0为函数在 上的零点,证明:
(ⅰ) ;
(ⅱ) .
试题篮
()