阅读以下材料,并解决相应问题:
小明在课外学习时遇到这样一个问题:
定义:如果二次函数 , 、 、 是常数)与 , 、 、 是常数)满足 , , ,则这两个函数互为“旋转函数”.求函数 的旋转函数,小明是这样思考的,由函数 可知, , , ,根据 , , ,求出 , , 就能确定这个函数的旋转函数.
请思考小明的方法解决下面问题:
(1)写出函数 的旋转函数.
(2)若函数 与 互为旋转函数,求 的值.
(3)已知函数 的图象与 轴交于 、 两点,与 轴交于点 ,点 、 、 关于原点的对称点分别是 、 、 ,试求证:经过点 、 、 的二次函数与 互为“旋转函数”.
如图,抛物线过点,对称轴是直线,且抛物线与轴的正半轴交于点.
(1)求抛物线的解析式,并根据图象直接写出当时,自变量的取值范围;
(2)在第二象限内的抛物线上有一点,当时,求的面积.
已知在平面直角坐标系中(如图),已知抛物线经过点,对称轴是直线,顶点为.
(1)求这条抛物线的表达式和点的坐标;
(2)点在对称轴上,且位于顶点上方,设它的纵坐标为,联结,用含的代数式表示的余切值;
(3)将该抛物线向上或向下平移,使得新抛物线的顶点在轴上.原抛物线上一点平移后的对应点为点,如果,求点的坐标.
已知二次函数 为常数).
(1)求证:不论 为何值,该函数的图象与 轴总有公共点;
(2)当 取什么值时,该函数的图象与 轴的交点在 轴的上方?
如图,已知点,,,抛物线与直线交于点.
(1)当抛物线经过点时,求它的表达式;
(2)设点的纵坐标为,求的最小值,此时抛物线上有两点,,,,且,比较与的大小;
(3)当抛物线与线段有公共点时,直接写出的取值范围.
在平面直角坐标系 中,已知抛物线 为常数).
(1)若抛物线经过点 ,求 的值;
(2)若抛物线经过点 和点 ,且 ,求 的取值范围;
(3)若将抛物线向右平移1个单位长度得到新抛物线,当 时,新抛物线对应的函数有最小值 ,求 的值.
如图,抛物线 与 轴交于点 ,对称轴为直线 ,平行于 轴的直线与抛物线交于 、 两点,点 在对称轴左侧, .
(1)求此抛物线的解析式.
(2)点 在 轴上,直线 将 面积分成 两部分,请直接写出 点坐标.
如图,已知抛物线与轴交于、两点.与轴交于点.且,.
(1)求抛物线的函数表达式;
(2)在抛物线的对称轴上是否存在一点,使周长最小?若存在,求出点的坐标;若不存在,请说明理由.
(3)连接、,在抛物线上是否存在一点,使?若存在,求出点的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,已知抛物线 的顶点为M,与y轴相交于点N,先将抛物线C1沿x轴翻折,再向右平移p个单位长度后得到抛物线C2:直线 经过M,N两点.
(1)结合图象,直接写出不等式 的解集;
(2)若抛物线C2的顶点与点M关于原点对称,求p的值及抛物线C2的解析式;
(3)若直线l沿y轴向下平移q个单位长度后,与(2)中的抛物线C2存在公共点,求3﹣4q的最大值.
在平面直角坐标系中,抛物线与轴交于点,将点向右平移2个单位长度,得到点,点在抛物线上.
(1)求点的坐标(用含的式子表示);
(2)求抛物线的对称轴;
(3)已知点,,.若抛物线与线段恰有一个公共点,结合函数图象,求的取值范围.
已知抛物线.
(1)当时,求抛物线与轴的交点坐标及对称轴;
(2)①试说明无论为何值,抛物线一定经过两个定点,并求出这两个定点的坐标;
②将抛物线沿这两个定点所在直线翻折,得到抛物线,直接写出的表达式;
(3)若(2)中抛物线的顶点到轴的距离为2,求的值.
已知是常数,抛物线的对称轴是轴,并且与轴有两个交点.
(1)求的值;
(2)若点在物线上,且到轴的距离是2,求点的坐标.
如图,已知二次函数的图象经过点.
(1)求的值和图象的顶点坐标.
(2)点在该二次函数图象上.
①当时,求的值;
②若点到轴的距离小于2,请根据图象直接写出的取值范围.
试题篮
()