如图1,在平面直角坐标系, 为坐标原点,点 ,点 .
(1)求 的度数;
(2)如图1,将 绕点 顺时针旋转得△ ,当 恰好落在 边上时,设△ 的面积为 ,△ 的面积为 , 与 有何关系?为什么?
(3)若将 绕点 顺时针旋转到如图2所示的位置, 与 的关系发生变化了吗?证明你的判断.
如图,平行四边形 的对角线 、 相交于点 , 平分 ,分别交 、 于点 、 ,连接 , , ,则下列结论:
① ② ③ ④ ⑤ ,正确的个数是
A.2B.3C.4D.5
如图,在 中, 平分 交 于点 ,过点 作 交 于点 ,且 平分 ,若 ,则 的长为
A.4B.6C. D.8
四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形 的内角,正方形 变为菱形 .若 ,则菱形 的面积与正方形 的面积之比是
A.1B. C. D.
已知:如图,在 中, ,点 是 的中点,且 ,点 是 的中点,过点 作 交 的延长线于点 .
(1)求证: ;
(2)若 , ,求 的长.
如图,在 中, , , ,将 绕点 逆时针旋转得到 △ ,使点 落在 边上,连接 ,则 的长度是
A. B. C. D.
已知:如图,在平面直角坐标系 中,等边 的边长为6,点 在边 上,点 在边 上,且 ,反比例函数 的图象恰好经过点 和点 ,则 的值为
A. B. C. D.
如图,在矩形 中,点 在 上,点 在 上,把这个矩形沿 折叠后,使点 恰好落在 边上的 点处,若矩形面积为 且 , ,则折痕 的长为
A.1B. C.2D.
如图,在 中, , ,分别以点 , 为圆心, 的长为半径作弧,两弧交于点 ,连接 , ,则四边形 的面积为
A. B.9C.6D.
如图,在 中,点 在 上,把这个直角三角形沿 折叠后,使点 恰好落到斜边 的中点 处,若 ,则折痕 的长为
A. B. C. D.6
如图,在矩形 中, , ,点 是对角线 上的一个动点,连接 ,以 为斜边作 的直角三角形 ,使点 和点 位于 两侧,点 从点 到点 的运动过程中,点 的运动路径长是 .
试题篮
()