如图,某煤矿因不按规定操作发生瓦斯爆炸,救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面 , 两个探测点探测到地下 处有生命迹象.已知 , 两点相距8米,探测线与地面的夹角分别是 和 ,试确定生命所在点 的深度(结果保留根号).
图1是疫情期间测温员用"额温枪"对小红测温时的实景图,图2是其侧面示意图,其中枪柄 与手臂 始终在同一直线上,枪身 与额头保持垂直.量得胳膊 , ,肘关节 与枪身端点 之间的水平宽度为 (即 的长度),枪身 .
(1)求 的度数;
(2)测温时规定枪身端点 与额头距离范围为 .在图2中,若测得 ,小红与测温员之间距离为 .问此时枪身端点 与小红额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)
(参考数据: , , ,
如图所示,小芳在中心广场放风筝,已知风筝拉线长100米(假设拉线是直的),且拉线与水平地面的夹角为 ,若小芳的身高忽略不计,则风筝离水平地面的高度是 米(结果保留根号).
今年疫情期间,针对各种入口处人工测量体温存在的感染风险高、效率低等问题,清华大学牵头研制一款“测温机器人”,如图1,机器人工作时,行人抬手在测温头处测量手腕温度,体温合格则机器人抬起臂杆行人可通行,不合格时机器人不抬臂杆并报警,从而有效阻隔病原体.
(1)为了设计“测温机器人”的高度,科研团队采集了大量数据.下表是抽样采集某一地区居民的身高数据:
测量对象 |
男性 岁) |
女性 岁) |
|||||
抽样人数(人 |
2000 |
5000 |
20000 |
2000 |
5000 |
20000 |
|
平均身高(厘米) |
173 |
175 |
176 |
164 |
165 |
164 |
|
根据你所学的知识,若要更准确的表示这一地区男、女的平均身高,男性应采用 176 厘米,女性应采用 厘米;
(2)如图2,一般的,人抬手的高度与身高之比为黄金比时给人的感觉最舒适,由此利用(1)中的数据得出测温头点 距地面105厘米.指示牌挂在两臂杆 , 的连接点 处, 点距地面110厘米.臂杆落下时两端点 , 在同一水平线上, 厘米,点 在点 的正下方5厘米处.若两臂杆长度相等,求两臂杆的夹角.
(参考数据表)
计算器按键顺序 |
计算结果(近似值) |
计算器按键顺序 |
计算结果(近似值) |
0.1 |
78.7 |
||
0.2 |
84.3 |
||
1.7 |
5.7 |
||
3.5 |
11.3 |
2021年,达州河边新建成了一座美丽的大桥.某学校数学兴趣小组组织了一次测桥墩高度的活动,如图,桥墩刚好在坡角为 的河床斜坡边,斜坡 长为48米,在点 处测得桥墩最高点 的仰角为 , 平行于水平线 , 长为 米,求桥墩 的高(结果保留1位小数). , , ,
如图1为搭建在地面上的遮阳棚,图2、图3是遮阳棚支架的示意图.遮阳棚支架由相同的菱形和相同的等腰三角形构成,滑块 , 可分别沿等长的立柱 , 上下移动, .
(1)若移动滑块使 ,求 的度数和棚宽 的长.
(2)当 由 变为 时,问棚宽 是增加还是减少?增加或减少了多少?
(结果精确到 ,参考数据: , , ,
把直尺、三角尺和圆形螺母按如图所示放置于桌面上, ,若量出 ,则圆形螺母的外直径是
A. B. C. D.
汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速.如图,学校附近有一条笔直的公路 ,其间设有区间测速,所有车辆限速40千米 小时.数学实践活动小组设计了如下活动:在 上确定 , 两点,并在 路段进行区间测速.在 外取一点 ,作 ,垂足为点 .测得 米, , .上午9时测得一汽车从点 到点 用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据: , , , , ,
如图1,一种折叠式小刀由刀片和刀鞘两部分组成.现将小刀打开成如图2位置,刀片部分是四边形 ,其中 , , , ,刀鞘的边缘 ,刀刃 与刀鞘边缘 相交于点 ,点 恰好落在刀鞘另一边缘 上时, , ,
(1)求刀片宽度 .
(2)若刀鞘宽度为 ,求刀刃 的长度.(结果精确到 (参考数据: , ,
某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆 的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长 为4米,落在斜坡上的影长 为3米, ,同一时刻,光线与水平面的夹角为 ,1米的竖立标杆 在斜坡上的影长 为2米,求旗杆的高度(结果精确到0.1米).(参考数据: , ,
如图,某市文化节期间,在景观湖中央搭建了一个舞台 ,在岸边搭建了三个看台 , , ,其中 , , 三点在同一条直线上,看台 , 到舞台 的距离相等,测得 , , ,小明、小丽分别在 , 看台观看演出,请分别求出小明、小丽与舞台 的距离.(结果保留根号)
如图,一棵与地面垂直的笔直大树 ,在点 被大风折断后, 部分倒下,树的顶点 与斜坡 上的点 重合 , 都保持笔直),经测量 , , , ,求 的长. ,精确到
图1是第七届国际数学教育大会 会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形 .若 , ,则 的值为
A. |
|
B. |
|
C. |
|
D. |
|
试题篮
()