如图,三棱台DEF-ABC中,
分别为
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)若
求证:平面
平面
.
如图,在三棱台
中,
分别为
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)若
平面
,
,
,求平面
与平面
所成的角(锐角)的大小.
如图,三角形
所在的平面与长方形
所在的平面垂直,
,
,
.
(1)证明:
平面
;
(2)证明:
;
(3)求点
到平面
的距离.
如图,已知平面,为等边三角形,
(1)若平面平面,求CD长度;
(2)求直线AB与平面ADE所成角的取值范围.
如图,直线平面,垂足为O,已知边长为2的等边三角形ABC在空间做符合以下条件的自由运动:①,②,则B,O两点间的最大距离为
A. | B. |
C. | D. |
如图,在四棱锥中,平面,底面是菱形,,为与的交点, 为上任意一点.
(1)证明:平面平面;
(2)若平面,并且二面角的大小为,求的值.
已知是空间中两不同直线,是空间中两不同平面,下列命题中正确的是( )
A.若直线,,则 |
B.若平面,,则 |
C.若平面,,则 |
D.若,,则 |
(本小题满分12分)如图,已知正三棱柱的各棱长均为4,是的中点,点在侧棱上,且
(Ⅰ)求证:⊥;
(Ⅱ)求点C到平面AEF的距离.
(本小题满分13分)如图,四棱锥,侧面是边长为的正三角形,且与底面垂直,底面是的菱形,为的中点.
(Ⅰ)求证:;
(Ⅱ)在棱上是否存在一点,使得四点共面?若存在,指出点的位置并证明;若不存在,请说明理由;
(Ⅲ)求点到平面的距离.
(本小题满分12分)如图,在长方体ABCD-A1B1C1D1中,AA1=AB=2AD=2,E为AB的中点,F为D1E上的一点,D1F=2FE.
(Ⅰ)证明:平面平面;
(Ⅱ)求二面角的平面角的余弦值.
(本小题满分12分)已知平面.
(1)求证:平面;
(2)M为线段CP上的点,当时,求二面角的余弦值.
如图,在矩形中,,为的中点.将沿折起,使得平面平面.点是线段的中点.
(Ⅰ)求证:平面平面;
(Ⅱ)求证:;
(Ⅲ)过点是否存在一条直线,同时满足以下两个条件:
①平面;②.
请说明理由.
(本小题满分12分)如图,直角梯形与等腰直角三角形所在的平面互相垂直.∥,,,.
(1)求证:;
(2)求直线与平面所成角的正弦值;
(3)线段上是否存在点,使// 平面?若存在,求出;若不存在,说明理由.
试题篮
()