甲厂以
千克/小时的速度匀速生产某种产品(生产条件要求
),每一小时可获得的利润是
元.
(1)求证:生产
千克该产品所获得的利润为
元;
(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.
随着机构改革工作的深入进行,各单位要减员增效。有一家公司现有职员人,(,且为偶数),每人每年可创利万元。据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年可多创利万元,但公司需支付下岗职员每人每年万元的生活费,并且该公司正常运转所需人数不得小于现有员工的,为获得最大的经济效益,该公司应裁员多少人?
某单位设计的两种密封玻璃窗如图所示:图1是单层玻璃,厚度为8 mm;图2是双层中空玻璃,厚度均为4 mm,中间留有厚度为的空气隔层.根据热传导知识,对于厚度为的均匀介质,两侧的温度差为,单位时间内,在单位面积上通过的热量,其中为热传导系数.假定单位时间内,在单位面积上通过每一层玻璃及空气隔层的热量相等.(注:玻璃的热传导系数为,空气的热传导系数为.)
(1)设室内,室外温度均分别为,,内层玻璃外侧温度为,外层玻璃内侧温度为,且.试分别求出单层玻璃和双层中空玻璃单位时间内,在单位面积上通过的热量(结果用,及表示);
(2)为使双层中空玻璃单位时间内,在单位面积上通过的热量只有单层玻璃的4%,应如何设计的大小?
已知函数在一个周期内的部分对应值如下表:
(I)求的解析式;
(II)设函数,,求的最大值和最小值.
已知函数
(I)求函数的最小值;
(II)对于函数和定义域内的任意实数,若存在常数,使得不等式和都成立,则称直线是函数和的“分界线”.
设函数,,试问函数和是否存在“分界线”?若存在,求出“分界线”的方程.若不存在请说明理由.
已知函数 f(x)=ax+lnx,其中a为常数,设e为自然对数的底数.
(1)当a=-1时,求的最大值;
(2)若f(x)在区间(0,e]上的最大值为-3,求a的值;
(3)当a=-1时,试推断方程是否有实数解 .
为了在夏季降温和冬季供暖时减少能源损耗,房屋的房顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元,该建筑物每年的能源消耗费用为C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0x10),若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。
(1)求k的值及f(x)的表达式;
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。
已知函数
(I)求函数的极值;
(II)对于函数和定义域内的任意实数,若存在常数,使得不等式和都成立,则称直线是函数和的“分界线”.
设函数,,试问函数和是否存在“分界线”?若存在,求出“分界线”的方程.若不存在请说明理由.
试题篮
()