优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 解答题
高中数学

.
(1)请写出的表达式(不需证明);
(2)求的极小值;
(3)设的最大值为的最小值为,求的最小值.

  • 题型:未知
  • 难度:未知

已知函数.
(1)若函数为奇函数,求a的值;
(2)若,直线都不是曲线的切线,求k的取值范围;
(3)若,求在区间上的最大值.

  • 题型:未知
  • 难度:未知

已知圆C的半径为2,圆心在轴正半轴上,直线与圆C相切
(1)求圆C的方程;
(2)过点的直线与圆C交于不同的两点且为
求:的面积.

  • 题型:未知
  • 难度:未知

设椭圆中心在坐标原点,是它的两个顶点,直线与直线相交于点D,与椭圆相交于两点.
(Ⅰ)若,求的值;
(Ⅱ)求四边形面积的最大值.

  • 题型:未知
  • 难度:未知

已知角A,B,C是△ABC三边a,b,c所对的角,,且.
(I)若△ABC的面积S=,求b+c的值;
(II)求b+c的取值范围.

  • 题型:未知
  • 难度:未知

已知椭圆C的中心在坐标原点,焦点在x轴上,左、右焦点分别为F1,F2,且|F1F2|=2,点P(1,)在椭圆C上.

(I)求椭圆C的方程;
(II)如图,动直线与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且,四边形面积S的求最大值.

  • 题型:未知
  • 难度:未知

已知函数.
(I)求f(x)的单调区间及极值;
(II)若关于x的不等式恒成立,求实数a的集合.

  • 题型:未知
  • 难度:未知

已知,分别是椭圆的左、右焦点,关于直线的对称点是圆的一条直径的两个端点.
(Ⅰ)求圆的方程;
(Ⅱ)设过点的直线被椭圆和圆所截得的弦长分别为,.当最大时,求直线的方程.

  • 题型:未知
  • 难度:未知

已知函数.
(Ⅰ)讨论函数的单调区间;
(Ⅱ)当时,若函数在区间上的最大值为28,求的取值范围.

  • 题型:未知
  • 难度:未知

已知函数.
(1)当时,试确定函数在其定义域内的单调性;
(2)求函数上的最小值;
(3)试证明:.

  • 题型:未知
  • 难度:未知

设函数.
(1)求函数的单调区间
(2)若函数有两个零点,且,求证:.

  • 题型:未知
  • 难度:未知

已知函数
(1)若函数在点处的切线方程为,求的值;
(2)若,函数在区间内有唯一零点,求的取值范围;
(3)若对任意的,均有,求的取值范围.

  • 题型:未知
  • 难度:未知

已知椭圆的一个顶点为,焦点在轴上,若右焦点到直线的距离为3.
(1)求椭圆的标准方程;
(2)设直线与椭圆相交于不同的两点,当时,求的取值范围.

  • 题型:未知
  • 难度:未知

已知函数
(1)当时,求函数上的极值;
(2)证明:当时,
(3)证明: .

  • 题型:未知
  • 难度:未知

设函数.
(1)若时,求处的切线方程;
(2)当时,,求的取值范围.

  • 题型:未知
  • 难度:未知

高中数学解答题