优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 待定系数法求二次函数解析式 / 解答题
初中数学

已知函数 y = m x 2 ( 2 m 5 ) x + m 2 的图象与 x 轴有两个公共点.

(1)求 m 的取值范围,并写出当 m 取值范围内取最大整数时函数的解析式;

(2)题(1)中求得的函数记为 C 1

①当 n x 1 时, y 的取值范围是 1 y 3 n ,求 n 的值;

②函数 C 2 : y = m ( x h ) 2 + k 的图象由函数 C 1 的图象平移得到,其顶点 P 落在以原点为圆心,半径为 5 的圆内或圆上.设函数 C 1 的图象顶点为 M ,求点 P 与点 M 距离最大时函数 C 2 的解析式.

来源:2017年山东省济宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 - 3 ax - 4 a 的图象经过点 C ( 0 , 2 ) ,交 x 轴于点 A B (点 A 在点 B 左侧),连接 BC ,直线 y = kx + 1 ( k > 0 ) y 轴交于点 D ,与 BC 上方的抛物线交于点 E ,与 BC 交于点 F

(1)求抛物线的解析式及点 A B 的坐标;

(2) EF DF 是否存在最大值?若存在,请求出其最大值及此时点 E 的坐标;若不存在,请说明理由.

来源:2020年山东省东营市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c 经过 A ( 1 , 0 ) B ( 3 , 0 ) 两点,交 y 轴于点 C ,点 D 为抛物线的顶点,连接 BD ,点 H BD 的中点.请解答下列问题:

(1)求抛物线的解析式及顶点 D 的坐标;

(2)在 y 轴上找一点 P ,使 PD + PH 的值最小,则 PD + PH 的最小值为  

(注:抛物线 y = a x 2 + bx + c ( a 0 ) 的对称轴是直线 x = b 2 a ,顶点坐标为 ( b 2 a 4 ac b 2 4 a )

来源:2018年黑龙江省牡丹江市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = - x 2 + 2 x + c x 轴正半轴, y 轴正半轴分别交于点 A B ,且 OA = OB ,点 G 为抛物线的顶点.

(1)求抛物线的解析式及点 G 的坐标;

(2)点 M N 为抛物线上两点(点 M 在点 N 的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点 Q 为抛物线上点 M N 之间(含点 M N ) 的一个动点,求点 Q 的纵坐标 y Q 的取值范围.

来源:2020年河南省中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,抛物线的顶点 A 的坐标为 ( 1 , 4 ) ,抛物线与 x 轴相交于 B C 两点,与 y 轴交于点 E ( 0 , 3 )

(1)求抛物线的表达式;

(2)已知点 F ( 0 , 3 ) ,在抛物线的对称轴上是否存在一点 G ,使得 EG + FG 最小,如果存在,求出点 G 的坐标;如果不存在,请说明理由.

(3)如图2,连接 AB ,若点 P 是线段 OE 上的一动点,过点 P 作线段 AB 的垂线,分别与线段 AB 、抛物线相交于点 M N (点 M N 都在抛物线对称轴的右侧),当 MN 最大时,求 ΔPON 的面积.

来源:2018年湖南省永州市中考数学试卷
  • 题型:未知
  • 难度:未知

阅读以下材料,并解决相应问题:

小明在课外学习时遇到这样一个问题:

定义:如果二次函数 y = a 1 x 2 + b 1 x + c 1 ( a 1 0 a 1 b 1 c 1 是常数)与 y = a 2 x 2 + b 2 x + c 2 ( a 2 0 a 2 b 2 c 2 是常数)满足 a 1 + a 2 = 0 b 1 = b 2 c 1 + c 2 = 0 ,则这两个函数互为“旋转函数”.求函数 y = 2 x 2 - 3 x + 1 的旋转函数,小明是这样思考的,由函数 y = 2 x 2 - 3 x + 1 可知, a 1 = 2 b 1 = - 3 c 1 = 1 ,根据 a 1 + a 2 = 0 b 1 = b 2 c 1 + c 2 = 0 ,求出 a 2 b 2 c 2 就能确定这个函数的旋转函数.

请思考小明的方法解决下面问题:

(1)写出函数 y = x 2 - 4 x + 3 的旋转函数.

(2)若函数 y = 5 x 2 + ( m - 1 ) x + n y = - 5 x 2 - nx - 3 互为旋转函数,求 ( m + n ) 2020 的值.

(3)已知函数 y = 2 ( x - 1 ) ( x + 3 ) 的图象与 x 轴交于 A B 两点,与 y 轴交于点 C ,点 A B C 关于原点的对称点分别是 A 1 B 1 C 1 ,试求证:经过点 A 1 B 1 C 1 的二次函数与 y = 2 ( x - 1 ) ( x + 3 ) 互为“旋转函数”.

来源:2020年四川省遂宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线过点 A ( 0 , 1 ) C ,顶点为 D ,直线 AC 与抛物线的对称轴 BD 的交点为 B ( 3 0 ) ,平行于 y 轴的直线 EF 与抛物线交于点 E ,与直线 AC 交于点 F ,点 F 的横坐标为 4 3 3 ,四边形 BDEF 为平行四边形.

(1)求点 F 的坐标及抛物线的解析式;

(2)若点 P 为抛物线上的动点,且在直线 AC 上方,当 ΔPAB 面积最大时,求点 P 的坐标及 ΔPAB 面积的最大值;

(3)在抛物线的对称轴上取一点 Q ,同时在抛物线上取一点 R ,使以 AC 为一边且以 A C Q R 为顶点的四边形为平行四边形,求点 Q 和点 R 的坐标.

来源:2020年四川省绵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

已知函数 y 1 = a x 2 + bx y 2 = ax + b ( ab 0 ) .在同一平面直角坐标系中.

(1)若函数 y 1 的图象过点 ( 1 , 0 ) ,函数 y 2 的图象过点 ( 1 , 2 ) ,求 a b 的值.

(2)若函数 y 2 的图象经过 y 1 的顶点.

①求证: 2 a + b = 0

②当 1 < x < 3 2 时,比较 y 1 y 2 的大小.

来源:2016年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知二次函数的图象与 x 轴交于 A B 两点, D 为顶点,其中点 B 的坐标为 ( 5 , 0 ) ,点 D 的坐标为 ( 1 , 3 )

(1)求该二次函数的表达式;

(2)点 E 是线段 BD 上的一点,过点 E x 轴的垂线,垂足为 F ,且 ED = EF ,求点 E 的坐标.

(3)试问在该二次函数图象上是否存在点 G ,使得 ΔADG 的面积是 ΔBDG 的面积的 3 5 ?若存在,求出点 G 的坐标;若不存在,请说明理由.

来源:2019年江苏省淮安市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,点 O 为原点,平行于 x 轴的直线与抛物线 L : y = a x 2 相交于 A B 两点(点 B 在第一象限),点 D AB 的延长线上.

(1)已知 a = 1 ,点 B 的纵坐标为2.

①如图1,向右平移抛物线 L 使该抛物线过点 B ,与 AB 的延长线交于点 C ,求 AC 的长.

②如图2,若 BD = 1 2 AB ,过点 B D 的抛物线 L 2 ,其顶点 M x 轴上,求该抛物线的函数表达式.

(2)如图3,若 BD = AB ,过 O B D 三点的抛物线 L 3 ,顶点为 P ,对应函数的二次项系数为 a 3 ,过点 P PE / / x 轴,交抛物线 L E F 两点,求 a 3 a 的值,并直接写出 AB EF 的值.

来源:2016年浙江省金华市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知抛物线 y = x 2 + bx + c 与直线 AB 相交于 A B 两点,其中 A ( - 3 , - 4 ) B ( 0 , - 1 )

(1)求该抛物线的函数表达式;

(2)点 P 为直线 AB 下方抛物线上的任意一点,连接 PA PB ,求 ΔPAB 面积的最大值;

(3)将该抛物线向右平移2个单位长度得到抛物线 y = a 1 x 2 + b 1 x + c 1 ( a 1 0 ) ,平移后的抛物线与原抛物线相交于点 C ,点 D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点 E ,使以点 B C D E 为顶点的四边形为菱形,若存在,请直接写出点 E 的坐标;若不存在,请说明理由.

来源:2020年重庆市中考数学试卷(a卷)
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx + 1 经过 A ( 1 , 0 ) B ( 1 , 1 ) 两点.

(1)求该抛物线的解析式;

(2)阅读理解:

在同一平面直角坐标系中,直线 l 1 : y = k 1 x + b 1 ( k 1 b 1 为常数,且 k 1 0 ) ,直线 l 2 : y = k 2 x + b 2 ( k 2 b 2 为常数,且 k 2 0 ) ,若 l 1 l 2 ,则 k 1 · k 2 = 1

解决问题:

①若直线 y = 3 x 1 与直线 y = mx + 2 互相垂直,求 m 的值;

②抛物线上是否存在点 P ,使得 ΔPAB 是以 AB 为直角边的直角三角形?若存在,请求出点 P 的坐标;若不存在,请说明理由;

(3) M 是抛物线上一动点,且在直线 AB 的上方(不与 A B 重合),求点 M 到直线 AB 的距离的最大值.

来源:2017年湖南省永州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知二次函数的图象过点 O ( 0 , 0 ) A ( 8 , 4 ) ,与 x 轴交于另一点 B ,且对称轴是直线 x = 3

(1)求该二次函数的解析式;

(2)若 M OB 上的一点,作 MN / / AB OA N ,当 ΔANM 面积最大时,求 M 的坐标;

(3) P x 轴上的点,过 P PQ x 轴与抛物线交于 Q .过 A AC x 轴于 C ,当以 O P Q 为顶点的三角形与以 O A C 为顶点的三角形相似时,求 P 点的坐标.

来源:2018年湖南省常德市中考数学试卷
  • 题型:未知
  • 难度:未知

定义:如图1,抛物线 y = a x 2 + bx + c ( a 0 ) x 轴交于 A B 两点,点 P 在该抛物线上 ( P 点与 A B 两点不重合),如果 ΔABP 的三边满足 A P 2 + B P 2 = A B 2 ,则称点 P 为抛物线 y = a x 2 + bx + c ( a 0 ) 的勾股点.

(1)直接写出抛物线 y = x 2 + 1 的勾股点的坐标.

(2)如图2,已知抛物线 C : y = a x 2 + bx ( a 0 ) x 轴交于 A B 两点,点 P ( 1 , 3 ) 是抛物线 C 的勾股点,求抛物线 C 的函数表达式.

(3)在(2)的条件下,点 Q 在抛物线 C 上,求满足条件 S ΔABQ = S ΔABP Q 点(异于点 P ) 的坐标.

来源:2017年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + bx + c ( a b c 是常数, a 0 ) 的自变量 x 与函数值 y 的部分对应值如下表:

x

- 2

- 1

0

1

2

y

m

0

- 3

n

- 3

(1)根据以上信息,可知抛物线开口向   ,对称轴为  

(2)求抛物线的表达式及 m n 的值;

(3)请在图1中画出所求的抛物线.设点 P 为抛物线上的动点, OP 的中点为 P ' ,描出相应的点 P ' ,再把相应的点 P ' 用平滑的曲线连接起来,猜想该曲线是哪种曲线?

(4)设直线 y = m ( m > - 2 ) 与抛物线及(3)中的点 P ' 所在曲线都有两个交点,交点从左到右依次为 A 1 A 2 A 3 A 4 ,请根据图象直接写出线段 A 1 A 2 A 3 A 4 之间的数量关系  

来源:2020年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学待定系数法求二次函数解析式解答题