已知函数 的图象与 轴有两个公共点.
(1)求 的取值范围,并写出当 取值范围内取最大整数时函数的解析式;
(2)题(1)中求得的函数记为 .
①当 时, 的取值范围是 ,求 的值;
②函数 的图象由函数 的图象平移得到,其顶点 落在以原点为圆心,半径为 的圆内或圆上.设函数 的图象顶点为 ,求点 与点 距离最大时函数 的解析式.
如图,抛物线 的图象经过点 ,交 轴于点 、 (点 在点 左侧),连接 ,直线 与 轴交于点 ,与 上方的抛物线交于点 ,与 交于点 .
(1)求抛物线的解析式及点 、 的坐标;
(2) 是否存在最大值?若存在,请求出其最大值及此时点 的坐标;若不存在,请说明理由.
如图,抛物线 经过 , 两点,交 轴于点 ,点 为抛物线的顶点,连接 ,点 为 的中点.请解答下列问题:
(1)求抛物线的解析式及顶点 的坐标;
(2)在 轴上找一点 ,使 的值最小,则 的最小值为 .
(注:抛物线 的对称轴是直线 ,顶点坐标为 ,
如图,抛物线 与 轴正半轴, 轴正半轴分别交于点 , ,且 ,点 为抛物线的顶点.
(1)求抛物线的解析式及点 的坐标;
(2)点 , 为抛物线上两点(点 在点 的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点 为抛物线上点 , 之间(含点 , 的一个动点,求点 的纵坐标 的取值范围.
如图1,抛物线的顶点 的坐标为 ,抛物线与 轴相交于 、 两点,与 轴交于点 .
(1)求抛物线的表达式;
(2)已知点 ,在抛物线的对称轴上是否存在一点 ,使得 最小,如果存在,求出点 的坐标;如果不存在,请说明理由.
(3)如图2,连接 ,若点 是线段 上的一动点,过点 作线段 的垂线,分别与线段 、抛物线相交于点 、 (点 、 都在抛物线对称轴的右侧),当 最大时,求 的面积.
阅读以下材料,并解决相应问题:
小明在课外学习时遇到这样一个问题:
定义:如果二次函数 , 、 、 是常数)与 , 、 、 是常数)满足 , , ,则这两个函数互为“旋转函数”.求函数 的旋转函数,小明是这样思考的,由函数 可知, , , ,根据 , , ,求出 , , 就能确定这个函数的旋转函数.
请思考小明的方法解决下面问题:
(1)写出函数 的旋转函数.
(2)若函数 与 互为旋转函数,求 的值.
(3)已知函数 的图象与 轴交于 、 两点,与 轴交于点 ,点 、 、 关于原点的对称点分别是 、 、 ,试求证:经过点 、 、 的二次函数与 互为“旋转函数”.
如图,抛物线过点 和 ,顶点为 ,直线 与抛物线的对称轴 的交点为 , ,平行于 轴的直线 与抛物线交于点 ,与直线 交于点 ,点 的横坐标为 ,四边形 为平行四边形.
(1)求点 的坐标及抛物线的解析式;
(2)若点 为抛物线上的动点,且在直线 上方,当 面积最大时,求点 的坐标及 面积的最大值;
(3)在抛物线的对称轴上取一点 ,同时在抛物线上取一点 ,使以 为一边且以 , , , 为顶点的四边形为平行四边形,求点 和点 的坐标.
已知函数 , .在同一平面直角坐标系中.
(1)若函数 的图象过点 ,函数 的图象过点 ,求 , 的值.
(2)若函数 的图象经过 的顶点.
①求证: ;
②当 时,比较 , 的大小.
如图,已知二次函数的图象与 轴交于 、 两点, 为顶点,其中点 的坐标为 ,点 的坐标为 .
(1)求该二次函数的表达式;
(2)点 是线段 上的一点,过点 作 轴的垂线,垂足为 ,且 ,求点 的坐标.
(3)试问在该二次函数图象上是否存在点 ,使得 的面积是 的面积的 ?若存在,求出点 的坐标;若不存在,请说明理由.
在平面直角坐标系中,点 为原点,平行于 轴的直线与抛物线 相交于 , 两点(点 在第一象限),点 在 的延长线上.
(1)已知 ,点 的纵坐标为2.
①如图1,向右平移抛物线 使该抛物线过点 ,与 的延长线交于点 ,求 的长.
②如图2,若 ,过点 , 的抛物线 ,其顶点 在 轴上,求该抛物线的函数表达式.
(2)如图3,若 ,过 , , 三点的抛物线 ,顶点为 ,对应函数的二次项系数为 ,过点 作 轴,交抛物线 于 , 两点,求 的值,并直接写出 的值.
如图,在平面直角坐标系中,已知抛物线 与直线 相交于 , 两点,其中 , .
(1)求该抛物线的函数表达式;
(2)点 为直线 下方抛物线上的任意一点,连接 , ,求 面积的最大值;
(3)将该抛物线向右平移2个单位长度得到抛物线 ,平移后的抛物线与原抛物线相交于点 ,点 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点 ,使以点 , , , 为顶点的四边形为菱形,若存在,请直接写出点 的坐标;若不存在,请说明理由.
如图,已知抛物线 经过 , 两点.
(1)求该抛物线的解析式;
(2)阅读理解:
在同一平面直角坐标系中,直线 , 为常数,且 ,直线 , 为常数,且 ,若 ,则 .
解决问题:
①若直线 与直线 互相垂直,求 的值;
②抛物线上是否存在点 ,使得 是以 为直角边的直角三角形?若存在,请求出点 的坐标;若不存在,请说明理由;
(3) 是抛物线上一动点,且在直线 的上方(不与 , 重合),求点 到直线 的距离的最大值.
如图,已知二次函数的图象过点 , ,与 轴交于另一点 ,且对称轴是直线 .
(1)求该二次函数的解析式;
(2)若 是 上的一点,作 交 于 ,当 面积最大时,求 的坐标;
(3) 是 轴上的点,过 作 轴与抛物线交于 .过 作 轴于 ,当以 , , 为顶点的三角形与以 , , 为顶点的三角形相似时,求 点的坐标.
定义:如图1,抛物线 与 轴交于 , 两点,点 在该抛物线上 点与 、 两点不重合),如果 的三边满足 ,则称点 为抛物线 的勾股点.
(1)直接写出抛物线 的勾股点的坐标.
(2)如图2,已知抛物线 与 轴交于 , 两点,点 是抛物线 的勾股点,求抛物线 的函数表达式.
(3)在(2)的条件下,点 在抛物线 上,求满足条件 的 点(异于点 的坐标.
试题篮
()