优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 平面解析几何的产生──数与形的结合
高中数学

如图,动点M与两定点A(-1,0),B(2,0)构成△MAB,且∠MBA=2∠MAB.设动点M的轨迹为C.
(1)求轨迹C的方程;
(2)设直线(其中)与y轴相交于点P,与轨迹C相交于点Q,R,且,求的取值范围.

  • 题型:未知
  • 难度:未知

是双曲线的两个焦点,是双曲线上的一点,且,则的面积等于

A. B. C. D.
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,O为坐标原点,给定两点A(1,0),B(0,—2),点C满足,其中,且
(1)求点C的轨迹方程;
(2)设点C的轨迹与双曲线(a>0,b>0)相交于M、N两点,且以MN为直径的圆经过原点,求证:为定值;
(3)在(2)的条件下,若双曲线的离心率不大于,求双曲线实轴长的取值范围。

来源:圆锥曲线
  • 题型:未知
  • 难度:未知

已知双曲线的右焦点为,则该双曲线的渐近线方程为       

来源:
  • 题型:未知
  • 难度:未知

(本小题满分15分)已知椭圆的左焦点为F,左右顶点分别为AC
上顶点为B,过F,B,C三点作,其中圆心P的坐标为
(1) 若椭圆的离心率,求的方程;
(2)若的圆心在直线上,求椭圆的方程.

来源:
  • 题型:未知
  • 难度:未知

四、选考题(本小题满分10分)
请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.
22.选修4-1:几何证明选讲
中,AB=AC,过点A的直线与其外接圆交于点P,交BC延长线于点D。

(1)求证:
(2)若AC=3,求的值。

  • 题型:未知
  • 难度:未知

过直线上的一点P作圆的两条切线为切点,当直线关于直线对称时,       

来源:
  • 题型:未知
  • 难度:未知

极坐标方程分别为的两个圆的圆心距为              .
14

来源:极坐标
  • 题型:未知
  • 难度:未知

(本小题满分12分)
已知分别是直线上的两个动点,线段的长为
的中点.
(1)求动点的轨迹的方程;
(2)过点作直线(与轴不垂直)与轨迹交于两点,与轴交于点.若,证明:为定值.

  • 题型:未知
  • 难度:未知

如图,已知椭圆的中心在坐标原点,焦点在轴上,它的一个顶点为,且离心率等于,过点的直线与椭圆相交于不同两点,点在线段上。

(1)求椭圆的标准方程;
(2)设,若直线轴不重合,
试求的取值范围。

  • 题型:未知
  • 难度:未知

:如图所示,ACAB分别是圆O的切线,BC为切点,OC = 3,AB = 4,延长OAD点,则△ABD的面积是___________.

来源:2011年广东省广雅金山佛山一中高三2月联考理科 数 学
  • 题型:未知
  • 难度:未知

已知点是平面内一动点,直线斜率之积为
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)过点作直线与轨迹交于两点,线段的中点为,求直线的斜率的取值范围。

  • 题型:未知
  • 难度:未知

如右图,在平面直角坐标系中,已知“葫芦”曲线由圆弧与圆弧相接而成,两相接点均在直线上.圆弧所在圆的圆心是坐标原点,半径为;圆弧过点
(I)求圆弧的方程;
(II)已知直线与“葫芦”曲线交于两点.当时,求直线的方程.

  • 题型:未知
  • 难度:未知

如图,椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的一个焦点是 F ( 1 , 0 ) O 为坐标原点。
               image.png

(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;
(Ⅱ)设过点 F 的直线 l 交椭圆于 A B 两点,若直线 l 绕点 F 任意转动,值有 | O A | 2 + | O B | 2 < | A B | 2 ,求 a 的取值范围。

来源:2008年高考福建卷理科数学试题
  • 题型:未知
  • 难度:未知

若直线 3 x + 4 y + m = 0 与圆 x = 1 + cos θ y = 2 + sin θ ( θ 为参数)没有公共点,则实数 m 的取值范围是.

来源:2008年高考福建卷理科数学试题
  • 题型:未知
  • 难度:未知

高中数学平面解析几何的产生──数与形的结合试题