如图,动点M与两定点A(-1,0),B(2,0)构成△MAB,且∠MBA=2∠MAB.设动点M的轨迹为C.
(1)求轨迹C的方程;
(2)设直线(其中
)与y轴相交于点P,与轨迹C相交于点Q,R,且
,求
的取值范围.
在平面直角坐标系中,O为坐标原点,给定两点A(1,0),B(0,—2),点C满足,其中
,且
,
(1)求点C的轨迹方程;
(2)设点C的轨迹与双曲线(a>0,b>0)相交于M、N两点,且以MN为直径的圆经过原点,求证:
为定值;
(3)在(2)的条件下,若双曲线的离心率不大于,求双曲线实轴长的取值范围。
(本小题满分15分)已知椭圆的左焦点为F,左右顶点分别为A、C,
上顶点为B,过F,B,C三点作,其中圆心P的坐标为
.
(1) 若椭圆的离心率,求
的方程;
(2)若的圆心在直线
上,求椭圆的方程.
四、选考题(本小题满分10分)
请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.
22.选修4-1:几何证明选讲
在中,AB=AC,过点A的直线与其外接圆交于点P,交BC延长线于点D。
(1)求证: ;
(2)若AC=3,求的值。
(本小题满分12分)
已知、
分别是直线
和
上的两个动点,线段
的长为
,
是
的中点.
(1)求动点的轨迹
的方程;
(2)过点作直线
(与
轴不垂直)与轨迹
交于
两点,与
轴交于点
.若
,
,证明:
为定值.
如图,已知椭圆的中心在坐标原点,焦点在轴上,它的一个顶点为
,且离心率等于
,过点
的直线
与椭圆相交于不同两点
,点
在线段
上。
(1)求椭圆的标准方程;
(2)设,若直线
与
轴不重合,
试求的取值范围。
:如图所示,AC和AB分别是圆O的切线,B、C为切点,且OC = 3,AB = 4,延长OA到D点,则△ABD的面积是___________.
如右图,在平面直角坐标系中,已知“葫芦”曲线
由圆弧
与圆弧
相接而成,两相接点
均在直线
上.圆弧
所在圆的圆心是坐标原点
,半径为
;圆弧
过点
.
(I)求圆弧的方程;
(II)已知直线:
与“葫芦”曲线
交于
两点.当
时,求直线
的方程.
如图,椭圆
的一个焦点是
,
为坐标原点。
(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;
(Ⅱ)设过点
的直线
交椭圆于
、
两点,若直线
绕点
任意转动,值有
,求
的取值范围。
试题篮
()