(本小题满分14分)如图,AB是圆O的直径,点C是弧AB的中点,点V是圆O所在平面
外一点,是AC的中点,已知,.
(1)求证:AC⊥平面VOD;
(2)求三棱锥的体积.
(本小题共13分)如图所示,在正方体中,分别是棱 的中点.
(Ⅰ)证明:平面平面;
(Ⅱ)证明://平面;
(Ⅲ)若正方体棱长为1,求四面体的体积.
【改编】(本小题满分12分)已知三棱柱中,侧棱垂直于底面,点在上.
(Ⅰ)若是中点,求证:平面;
(Ⅱ)当时,求三棱锥的体积.
(本小题14分)如图,在四棱锥中,底面是正方形,侧棱,,是的中点,交于点.
(1)证明//平面;
(2)证明⊥平面;
(3)求.
如图,圆锥中,为底面圆的两条直径 ,AB交CD于O,且,,为的中点.
(1)求证:平面;
(2)求圆锥的表面积;求圆锥的体积。
【改编】如图,在三棱锥A-BCD中,底面BCD是边长为2的等边三角形,侧棱AB=AD=,AC=2,O、E、F分别是BD、BC、AC的中点.
(1)求证:EF∥平面ABD;
(2)求证:AO⊥平面BCD;
(3)求三棱锥的体积.
【原创】如图:直角梯形ABCD中,AD∥BC,∠ABC=90°,E、F分别是边AD和BC上的点,且EF∥AB,AD ="2AE" ="2AB" =" 4CF=" 4,将四边形EFCD沿EF折起使AE=AD.
(1)求证:AF∥平面CBD;
(2)求几何体ADE-BCF的体积.
如图,四棱锥中,底面是以为中心的菱形,底面,,为上一点,且.
(1)证明:平面;
(2)若,求四棱锥的体积.
【原创】如图,在三棱柱中,,底面为等边三角形,且,、、分别是,的中点.
(1)求证:∥;
(2)求证:;
(3)求三棱锥的体积.
(本小题满分12分)如图所示,已知在四棱锥中, ∥,,,
且
(1)求证:平面;
(2)试在线段上找一点,使∥平面, 并说明理由;
(3)若点是由(2)中确定的,且,求四面体的体积.
(本小题满分12分)如图所示的几何体中,内接于圆,且是圆的直径,四边形为矩形,且.
(Ⅰ)证明:;
(Ⅱ)若且二面角所成角的余弦值是,试求该几何体的体积.
如图,在矩形中,点为边上的点,点为边的中点, ,现将沿边折至位置,且平面平面.
(Ⅰ)求证:平面平面;
(Ⅱ)求四棱锥的体积.
(本小题满分12分)如图,在斜三棱柱中,侧面与侧面都是菱形,,.
(Ⅰ)求证:;
(Ⅱ)若,求四棱锥的体积.
(本小题满分14分)如图,在边长为的菱形中,,点,分别是边,的中点,.沿将△翻折到△,连接,得到如图的五棱锥,且.
(1)求证:平面;
(2)求四棱锥的体积.
(本小题满分12分)如图,四棱锥的底面是正方形,平面,,点是上的点,且.
(1)求证:对任意的,都有;
(2)若二面角的大小为,求实数的值.
试题篮
()