优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用
高中数学

如图所示,空间中有一直角三角形为直角,,现以其中一直角边为轴,按逆时针方向旋转后,将点所在的位置记为,再按逆时针方向继续旋转后,点所在的位置记为.
(1)连接,取的中点为,求证:面
(2)求与平面所成的角的正弦值.

  • 题型:未知
  • 难度:未知

如图,在四棱锥P-ABCD中,侧面PAD底面ABCD,侧棱,底面ABCD为直角梯形,其中BC//AD,ABAD,AD=2,AB=BC=l,E为AD中点.
(1)求证:PE平面ABCD:
(2)求异面直线PB与CD所成角的余弦值:
(3)求点A到平面PCD的距离.

  • 题型:未知
  • 难度:未知

如图,在四棱锥P-ABCD中,平面ABCD,AD//BC,AC,,点M在线段PD上.

(1)求证:平面PAC;
(2)若二面角M-AC-D的大小为,试确定点M的位置.

  • 题型:未知
  • 难度:未知

如图,在正方体中,的中点,的中点.
(1)求证:平面平面
(2)求证:平面
(3)设为正方体棱上一点,给出满足条件的点的个数,并说明理由.

  • 题型:未知
  • 难度:未知

如图,在三棱锥中,底面的中点, 的中点,.

(1)求证:平面
(2)求与平面成角的正弦值;
(3)设点在线段上,且平面,求实数的值.

  • 题型:未知
  • 难度:未知

如图,四棱锥中,的中点,
(1)求的长;
(2)求二面角的正弦值.

  • 题型:未知
  • 难度:未知

如图所示,在四棱锥中,底面为矩形,平面,点在线段上,平面
(1)证明:平面
(2)若,求二面角的正切值.

  • 题型:未知
  • 难度:未知

如图,长方体中,,点的中点。

(1)求证:直线∥平面
(2)求证:平面平面

  • 题型:未知
  • 难度:未知

(本小题满分12分)
在直三棱柱ABC—A1B1C1中,∠ABC=90°,BC=CC1,M、N分别为BB1
A1C1的中点.
(1)求证:CB1⊥平面ABC1
(2)求证:MN//平面ABC1.

  • 题型:未知
  • 难度:未知

是两个不同的平面,是平面之外的两条不同直线,给出四个论断:
  ②  ③   ④。 以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:________________________________.

  • 题型:未知
  • 难度:未知

在下列关于直线与平面的命题中,正确的是(      )

A.若,则 B.若,则
C.若,则 D.若,且,则
  • 题型:未知
  • 难度:未知

如图,四棱锥中, ,,侧面为等边三角形..

(1)证明:
(2)求AB与平面SBC所成角的正弦值。

  • 题型:未知
  • 难度:未知

已知等腰梯形PDCB中(如图),PB=3,DC=1,PD=BC=,A为PB边上一点,且PA=1,将△PAD沿AD折起,使平面PAD⊥平面ABCD(如图).
(1)证明:平面PAD⊥平面PCD.
(2)试在棱PB上确定一点M,使截面AMC把几何体分成的两部分VPDCMA∶VMACB=2∶1.
(3)在M满足(2)的情况下,判断直线PD是否平行平面AMC.

  • 题型:未知
  • 难度:未知

如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.

(1)求证:平面PAC⊥平面PBC.
(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.

  • 题型:未知
  • 难度:未知

如图,AB=AD,∠BAD=90°,M,N,G分别是BD,BC,AB的中点,将等边△BCD沿BD折叠到△BC′D的位置,使得AD⊥C′B.
(1)求证:平面GNM∥平面ADC′.
(2)求证:C′A⊥平面ABD.

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题