如图所示, 四棱锥P-ABCD的底面是边长为1的正方形,PA^CD,PA = 1,PD=,E为PD上一点,PE = 2ED.
(1)求证:PA ^平面ABCD;
(2)求二面角D-AC-E的余弦值;
(3)在侧棱PC上是否存在一点F,使得BF // 平面AEC?
若存在,指出F点的位置,并证明;若不存在,说明理由.
已知m、n为两条不同的直线,、为两个不同的平面,下列命题中正确的是 ( )
A.若∥,m∥,则m∥ | B.若m⊥,m⊥,则∥ |
C.若⊥,m⊥,则m⊥ | D.若m∥,m⊥n,则n⊥ |
如图,已知四棱锥P-ABCD的底面为直角梯形,AD∥BC,∠BCD=900,
PA=PB,PC=PD.
(1)试判断直线CD与平面PAD是否垂直,并简述理由;
(2)求证:平面PAB⊥平面ABCD;
(3)如果CD=AD+BC,二面角P-CB-A等于600,求二面角P-CD-A的大小.
在如图所示的多面体中,四边形和都为矩形。
(Ⅰ)若,证明:直线平面;
(Ⅱ)设分别是线段的中点,在线段AB上是否存在一点,使直线平面?请证明你的结论。
如图1,四边形
为矩形,
平面
,
,作如图2折叠,折痕
.其中点
分别在线段
上,沿
折叠后点
在线段
上的点记为
,并且
.
(1)证明:
平面
;
(2)求三棱锥
的体积.
若空间中四条直线两两不同的直线,满足,则下列结论一定正确的是( )
A. | B. | ||
C. | 既不平行也不垂直 | D. | 的位置关系不确定 |
如图在三棱锥
中,
分别为棱
的中点,已知
.
求证:
(1)直线
平面
;
(2)平面
平面
.
如图,在四棱柱
中,底面
是等腰梯形,
是线段
的中点.
(Ⅰ)求证:
;
(Ⅱ)若
垂直于平面
且
,求平面
和平面
所成的角(锐角)的余弦值.
如图,四棱锥中,为矩形,平面平面.
(1)求证:
(2)若问为何值时,四棱锥的体积最大?并求此时平面与平面夹角的余弦值.
试题篮
()