如图,四边形为正方形,平面,,于点,,交于点.
(1)证明:平面;
(2)求二面角的余弦值.
在平行四边形
中,
,
.将
沿
折起,使得平面
平面
,如图.
(1)求证:
;
(2)若
为
中点,求直线
与平面
所成角的正弦值.
如图,四棱锥中,底面是以为中心的菱形,底面,,为上一点,且.
(1)证明:平面;
(2)若,求四棱锥的体积.
如图,在四棱锥
中,平面
平面
;
,
.
(1)证明:
平面
;
(2)求直线
与平面
所成的角的正切值.
下列命题:①已知平面满足则.
②E,F,G,H是空间四边形ABCD各边AB,BC,CD,DA的中点,若对角线BD=2,AC=4,则
③过所在平面外一点P,作,垂足为O,连接PA,PB,PC,若,则点O是的垂心
其中正确命题的序号是 。
如图,在长方体中,.
(1)若点在对角线上移动,求证:⊥;
(2)当为棱中点时,求点到平面的距离。
在类比此性质,如下图,在四面体P-ABC中,若PA、PB、PC两两垂直,底面ABC上的高为h,则得到的正确结论为________________.
如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(1)求证:AB1⊥面A1BD;
(2)求二面角A-A1D-B的余弦值;
(3)求点C到平面A1BD的距离.
在类比此性质,如下图,在四面体P-ABC中,若PA、PB、PC两两垂直,底面ABC上的高为h,则得到的正确结论为__________________________.
如图,,为圆柱的母线,是底面圆的直径,,分别是,的中点,.
(1)证明:;
(2)证明:;
(3)假设这是个大容器,有条体积可以忽略不计的小鱼能在容器的任意地方游弋,如果鱼游到四棱锥 内会有被捕的危险,求鱼被捕的概率.
如图菱形ABEF所在平面与直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,,点H、G分别是线段EF、BC的中点.
(1)求证:平面AHC平面;(2)(2)求此几何体的体积.
如图菱形ABEF所在平面与直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,,点H、G分别是线段EF、BC的中点.
(1)求证:平面AHC平面;(2)点M在直线EF上,且平面,求平面ACH与平面ACM所成锐角的余弦值.
如图,已知平面,,,
且是的中点,.
(1)求证:平面;
(2)求证:平面平面;
(3)求此多面体的体积.
如图,在四棱锥中,底面是边长为的正方形,侧面
底面,且,、分别为、的中点.
(1)求证:平面;
(2)求证:面平面;
(3)在线段上是否存在点,使得二面角的余弦值为?说明理由.
试题篮
()