(本小题满分12分)
设F是椭圆C:的左焦点,直线l为其左准线,直线l与x轴交于点P,线段MN为椭圆的长轴,已知
.
(1) 求椭圆C的标准方程;
(2) 若过点P的直线与椭圆相交于不同两点A、B求证:∠AFM =∠BFN.
建立适当的坐标系,用坐标法解决下列问题:
已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?
![]() |
(本小题满分12分)
扇形中,半径
°,在
的延长线上有一动点
,过点
作
与半圆弧
相切于点
,且与过点
所作的
的垂线交于点
,此时显然有CO=CD,DB=DE,问当OC多长时,直角梯形
面积最小,并求出这个最小值。
已知动点(x, y) 在曲线C上,将此点的纵坐标变为原来的2倍,对应的横坐标不变,得到的点满足方程;定点M(2,1),平行于OM的直线
在y轴上的截距为m(m≠0),直线
与曲线C交于A、B两个不同点.
(1)求曲线的方程; (2)求m的取值范围.
(本小题满分14分)
设圆满足条件:(1)截y轴所得的弦长为2;(2)被x轴分成两段弧,其弧长的比为3︰1;(3)圆心到直线:
的距离为
.求这个圆的方程.
已知动圆过定点P(1,0),且与定直线相切,点C在
上.
(1)求动圆圆心的轨迹M的方程;
(2)设过点P,且斜率为-的直线与曲线M相交于A、B两点,
①求线段AB的长;
②问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;
设过点的直线
分别与
正半轴,
轴正半轴交于
两点,
为坐标原点,则三角形
面积最小时直线方程为
试题篮
()