优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 平面解析几何的产生──数与形的结合
高中数学

(本小题满分14分)
椭圆的离心率为,长轴端点与短轴端点间的距离为
(I)求椭圆的方程;
(II)设过点的直线与椭圆交于两点,为坐标原点,若
为直角三角形,求直线的斜率。

来源:
  • 题型:未知
  • 难度:未知

(本小题满分13分)
过圆上一点A(4,6)作圆的一条动弦AB,点P为弦AB的中点.
(Ⅰ)求点P的轨迹方程;
(Ⅱ)设点P关于点D(9,0)的对称点为E,O为坐标原点,将线段OP绕原点O依逆时针方向旋转90°后,所得线段为OF,求|EF|的取值范围.

  • 题型:未知
  • 难度:未知

本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知椭圆),其左、右焦点分别为,且成等比数列.
(1)求的值.
(2)若椭圆的上顶点、右顶点分别为,求证:
(3)若为椭圆上的任意一点,是否存在过点的直线,使轴的交点满足?若存在,求直线的斜率;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

求圆上的点到直线的距离的最小值和最大值.

  • 题型:未知
  • 难度:未知

如图,过点作垂直于轴的垂线交曲线于点,又过点轴的平行线交轴于点,记点关于直线的对称点为;……;依此类推.若数列的各项分别为点列的横坐标,且,则       

  • 题型:未知
  • 难度:未知

若圆与圆关于直线对称,过点的圆P轴相切,则圆心P的轨迹方程为                                                                         (   )

A. B.
C. D.
  • 题型:未知
  • 难度:未知

(本小题满分14分)
已知椭圆的左、右焦点分别为F1、F2,短轴两个端点为A、B,且四边形F1AF2B是边长为2的正方形。
(1)求椭圆的方程;
(2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P。证明:为定值。
(3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由。

  • 题型:未知
  • 难度:未知

(本小题满分13分)
设椭圆的离心率,右焦点到直线的距离为坐标原点.
(I)求椭圆的方程;
(II)过点作两条互相垂直的射线,与椭圆分别交于两点,证明点到直
线的距离为定值,并求弦长度的最小值.

  • 题型:未知
  • 难度:未知

O 1 O 2 的极坐标方程分别为 ρ = 4 cos θ , ρ = - 4 sin θ .
(Ⅰ)把 O 1 O 2 的极坐标方程化为直角坐标方程;
(Ⅱ)求经过 O 1 , O 2 交点的直线的直角坐标方程.

来源:2007年普通高等学校招生全国统一考试理科数学卷(海南)
  • 题型:未知
  • 难度:未知

如图,已知 A P O 的切线, P 为切点, A C 是⊙O的割线,与 O 交于 B C 两点,圆心 O P A C 的内部,点 M B C 的中点.

image.png

(Ⅰ)证明 A , P , O , M 四点共圆;
(Ⅱ)求 O A M A P M 的大小.

来源:2007年普通高等学校招生全国统一考试理科数学卷(海南)
  • 题型:未知
  • 难度:未知

已知双曲线的离心率,左、右焦点分别为,左准线为,能否在双曲线的左支上找到一点,使得的距离的等比中项?

  • 题型:未知
  • 难度:未知

15.(几何证明选讲选做题)
如图3,在中,,以为直径作半圆交,过作半圆的切线交,若,则=          

来源:2010年深圳市高三年级第二次调研考试
  • 题型:未知
  • 难度:未知

曲线 y = e 1 2 在点 ( 4 , e 2 ) 处的切线与坐标轴所围三角形的面积为

A. 9 2 e 2 B. 4 e 2 C. 2 e 2 D. e 2
来源:2007年普通高等学校招生全国统一考试理科数学卷(海南)
  • 题型:未知
  • 难度:未知

抛物线 y 2 = 4 x 的焦点为 F ,准线为 l ,经过 F 且斜率为 3 的直线与抛物线在 x 轴上方的部分相交于点 A , A K l ,垂足为 K ,则 A K F 的面积是

A. 4 B. 3 3 C. 4 3 D. 8
来源:2007年普通高等学校招生全国统一考试理科数学卷(山西)
  • 题型:未知
  • 难度:未知

是曲线上的任一点,是曲线上的任一点,称的最小值为曲线与曲线的距离.
(1)求曲线与直线的距离;
(2)设曲线与直线)的距离为,直线与直线的距离为,求的最小值.

  • 题型:未知
  • 难度:未知

高中数学平面解析几何的产生──数与形的结合试题