优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 平面解析几何的产生──数与形的结合
高中数学

(本题满分16分)本题共有2个小题,第1小题满分6分,第2小题满分10分.
  已知两点,点是直角坐标平面上的动点,若将点的横坐标保持不变、纵坐标扩大到倍后得到点满足
(1) 求动点所在曲线的轨迹方程;
(2)(理科)过点作斜率为的直线交曲线两点,且满足,又点关于原点O的对称点为点,试问四点是否共圆,若共圆,求出圆心坐标和半径;若不共圆,请说明理由.
(文科)过点作斜率为的直线交曲线两点,且满足(O为坐标原点),试判断点是否在曲线上,并说明理由.

  • 题型:未知
  • 难度:未知

是曲线上的任一点,是曲线上的任一点,称的最小值为曲线与曲线的距离.
(1)求曲线与直线的距离;
(2)设曲线与直线)的距离为,直线与直线的距离为,求的最小值.

  • 题型:未知
  • 难度:未知

已知双曲线的一条渐近线方程是y=,它的一个焦点在抛物线的准线上,则双曲线的方程为

A. B.
C. D.
来源:2010年普通高等学校招生全国统一考试(天津卷)数学(理科)
  • 题型:未知
  • 难度:未知

(本小题满分10分)选修4-1:几何证明选讲
如图所示,AB是⊙O的直径,
G为AB延长线上的一点,GCD是⊙O的割线,过点<
G作AB的垂线,交AC的延长线于点E,交AD的延
长线于点F,过G作⊙O的切线,切点为H .
求证:(Ⅰ)C,D,F,E四点共圆;
(Ⅱ)GH2=GE·GF.

  • 题型:未知
  • 难度:未知

已知椭圆的离心率,左、右焦点分别为,定点P,点在线段的中垂线上.
(1)求椭圆C的方程;
(2)设直线与椭圆C交于M、N两点,直线的倾斜角分别为,求证:直线过定点,并求该定点的坐标.

  • 题型:未知
  • 难度:未知

四、选考题(本小题满分10分)
请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.
22.选修4-1:几何证明选讲
中,AB=AC,过点A的直线与其外接圆交于点P,交BC延长线于点D。

(1)求证:
(2)若AC=3,求的值。

  • 题型:未知
  • 难度:未知

已知椭圆C:=1(a>b>0)的离心率e=,左、右焦点分别为F1、F2,点P(2,),点F2在线段PF1的中垂线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+m与椭圆C交于M、N两点,直线F2M与F2N的倾斜角分别为α,β,且α+β=π,试问直线l是否过定点?若过,求该定点的坐标.

  • 题型:未知
  • 难度:未知

是方程表示椭圆的(   )

A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分又不必要条件
  • 题型:未知
  • 难度:未知

(本小题满分12分)
已知分别是直线上的两个动点,线段的长为
的中点.
(1)求动点的轨迹的方程;
(2)过点作直线(与轴不垂直)与轨迹交于两点,与轴交于点.若,证明:为定值.

  • 题型:未知
  • 难度:未知

如图,,过曲线上一点的切线,与曲线也相切于点,记点的横坐标为

(1)用表示切线的方程;
(2)用表示的值和点的坐标;
(3)当实数取何值时,
并求此时所在直线的方程。

  • 题型:未知
  • 难度:未知

圆C与y轴相切,圆心在射线 x-3y=0(x>0)上,且圆C截直线y=x所得弦长为.  (1)求圆C的方程。(2)点P(x,y)是圆C上的动点,求x+y的最大值。(3)求过点M(2,1)的圆的弦的中点轨迹方程。

  • 题型:未知
  • 难度:未知

直线与圆相交于

A.B两点(其中是实数),且是直角三角形(O是坐标原点),则点P与点之间距离的最小值为()
A
B. C. D.
  • 题型:未知
  • 难度:未知

若圆与圆相交于A、B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是       

  • 题型:未知
  • 难度:未知

已知椭圆和抛物线有公共焦点F(1,0), 的中心和的顶点都在坐标原点,过点M(4,0)的直线与抛物线分别相交于A,B两点.
(Ⅰ)写出抛物线的标准方程;
(Ⅱ)若,求直线的方程;
(Ⅲ)若坐标原点关于直线的对称点在抛物线上,直线与椭圆有公共点,求椭圆的长轴长的最小值.

  • 题型:未知
  • 难度:未知

A B C 是等腰三角形, A B C = 120 ° ,则以 A , B 为焦点且过点 C 的双曲线的离心率为(

A. 1 + 2 2 B. 1 + 3 2 C. 1 + 2 D. 1 + 3
来源:2008年高考全国卷Ⅱ文科数学试题
  • 题型:未知
  • 难度:未知

高中数学平面解析几何的产生──数与形的结合试题