优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 平面解析几何的产生──数与形的结合
高中数学

如右图,在平面直角坐标系中,已知“葫芦”曲线由圆弧与圆弧相接而成,两相接点均在直线上.圆弧所在圆的圆心是坐标原点,半径为;圆弧过点
(I)求圆弧的方程;
(II)已知直线与“葫芦”曲线交于两点.当时,求直线的方程.

  • 题型:未知
  • 难度:未知

设过点的直线与椭圆相交于AB两个不同的点,且.记O为坐标原点.求的面积取得最大值时的椭圆方程.

  • 题型:未知
  • 难度:未知

如图,,过曲线上一点的切线,与曲线也相切于点,记点的横坐标为

(1)用表示切线的方程;
(2)用表示的值和点的坐标;
(3)当实数取何值时,
并求此时所在直线的方程。

  • 题型:未知
  • 难度:未知

(本小题满分10分)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线,将上的所有点的横坐标、纵坐标分别伸长为原来的、2倍后得到曲线. 以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.
(Ⅰ)试写出直线的直角坐标方程和曲线的参数方程;
(Ⅱ)在曲线上求一点P,使点P到直线的距离最大,并求出此最大值.

  • 题型:未知
  • 难度:未知

直线与圆相交于

A.B两点(其中是实数),且是直角三角形(O是坐标原点),则点P与点之间距离的最小值为()
A
B. C. D.
  • 题型:未知
  • 难度:未知

(本小题满分10分)如图,在中,,以为直径的圆于点,连接,并延长交的延长线于点,圆的切线
(Ⅰ)证明:
(Ⅱ)若,求的长。

  • 题型:未知
  • 难度:未知

已知圆和直线
⑴ 证明:不论取何值,直线和圆总相交;
⑵ 当取何值时,圆被直线截得的弦长最短?并求最短的弦的长度.

  • 题型:未知
  • 难度:未知

已知椭圆和抛物线有公共焦点F(1,0), 的中心和的顶点都在坐标原点,过点M(4,0)的直线与抛物线分别相交于A,B两点.
(Ⅰ)写出抛物线的标准方程;
(Ⅱ)若,求直线的方程;
(Ⅲ)若坐标原点关于直线的对称点在抛物线上,直线与椭圆有公共点,求椭圆的长轴长的最小值.

  • 题型:未知
  • 难度:未知

双曲线上到定点的距离是的点的个数是(   )

A. B. C. D.
  • 题型:未知
  • 难度:未知

已知点P是以F1、F2为左、右焦点的双曲线左支上一点,且满足,则此双曲线的离心率为      (  )

A. B. C. D.
  • 题型:未知
  • 难度:未知

(本小题满分14分)设椭圆的左右焦点分别为,离心率,点在直线:的左侧,且F2l的距离为
(1)求的值;
(2)设上的两个动点,,证明:当取最小值时,

  • 题型:未知
  • 难度:未知

已知点是以为焦点的椭圆上一点,且则该椭圆的离心率等于_______

  • 题型:未知
  • 难度:未知

在平面直角坐标系中,两点间的"距离"定义为则平面内与轴上两个不同的定点的"距离"之和等于定值(大于)的点的轨迹可以是(

A.

B.

C.

D.

  • 题型:未知
  • 难度:未知

(本题满分16分)本题共有2个小题,第1小题满分6分,第2小题满分10分.
  已知两点,点是直角坐标平面上的动点,若将点的横坐标保持不变、纵坐标扩大到倍后得到点满足
(1) 求动点所在曲线的轨迹方程;
(2)(理科)过点作斜率为的直线交曲线两点,且满足,又点关于原点O的对称点为点,试问四点是否共圆,若共圆,求出圆心坐标和半径;若不共圆,请说明理由.
(文科)过点作斜率为的直线交曲线两点,且满足(O为坐标原点),试判断点是否在曲线上,并说明理由.

  • 题型:未知
  • 难度:未知

已知椭圆的离心率,左、右焦点分别为,定点P,点在线段的中垂线上.
(1)求椭圆C的方程;
(2)设直线与椭圆C交于M、N两点,直线的倾斜角分别为,求证:直线过定点,并求该定点的坐标.

  • 题型:未知
  • 难度:未知

高中数学平面解析几何的产生──数与形的结合试题